AustinPower Engineering	PEM Fuel Ce Analysis	Il System Manufacturing Cost s for Automotive Applications
		Yong Yang President
	October, 2013	Austin Power Engineering LLC 2310 W 9 th ST UNIT 1 Austin, TX 78703 USA www.AUSTINPOWERENG.com
		yang.yong@austinpowereng.com © 2013 Austin Power Engineering LLC

Have been working on fuel cell manufacturing cost modeling for US DOE, UK Carbon Trust, and commercial clients since 2002.

Approach Manufacturing Cost Modeling Methodology

This approach has been used successfully for estimating the cost of various technologies for commercial clients and the DOE.

2

Engineering

Combining performance and cost model will easily generate cost results, even when varying the design inputs.

The bottom-up cost approach will be used to capture accurately the manufacturing costs for each fabrication step.

True-value-mapping analysis virtualizes costs in each fabrication step, which breaks down costs into materials, labor, capex, utility, maintenance, etc.

4

Austin Power Engineering's manufacturing cost models can be used to determine a fully loaded selling price to consumers at high or low volumes.

We assume 100% financing with an annual discount rate of 10%, a 10-year equipment life, a 25-year building life, and three months working capital.

Approach Scope

Our cost assessment includes a fuel cell system, an on-board H2 storage, and a hybrid battery pack which is for a middle size passenger vehicle.

PEMFC System	On-board H2 Storage	Hybrid Battery
 80 kW_{net} Stack Membrane Electrode GDL/MPL Bipolar Plate Seal & Gasket Balance of Stack BOP 	 Type IV Composite Tank Fill Port High Pressure Regulator Valves & Sensors Fittings & Piping Assembly & Inspection 	• Li-Ion hybrid battery (40kW, 1.2kWh)
 Fuer Management Thermal Management Air Management Water Management Balance of System Control Board Valves & Sensors Fittings & Piping Wire Harness Others 	Compressed Hydrogen Storage	PEM Fuel Cell System Li-lon Battery Pack
 Assembly, QC, and Conditioning 	Fuel Cell Hybrid Electri	ic Vehicle Power System

PEMFC System 80 kW_{net} PEM Fuel Cell System *Preliminary System Design*

The 80 kW_{net} direct hydrogen PEM fuel cell system configuration was referenced in previous and current studies conducted by Argon National Laboratory (ANL).

80 kW_{net} Fuel Cell System Schematic¹

1. DOE Fuel Cell Technologies Program Record, "Fuel Cell System Cost -2012" 2. R. K. Ahluwalia, X. Wang, and R. Kumar, "Fuel cells systems analysis," 2012 DOE Hydrogen Program Review, Washington DC, May 14-18, 2012.

Key Parameters Stack • 3M NSTFC MEA • 25 μm supported membrane • 0.196 mg/cm² Pt

- Power density: 984 mW/cm²
- Metal bipolar plates
- Non-woven carbon fiber GDL

Air Management

- Honeywell type compressor /expender
- Air-cooled motor / Air-foil bearing

Water Management

- Cathode planar membrane humidifier with pre-cooler
- No anode humidifier

Thermal Management

Micro-channel HX

Fuel Management

• Parallel ejector / pump hybrid

Based on ANL's stack performance analysis, we made the following system and material assumptions for the cost estimation.

Stack Components	Unit	Current System	Comments
Production volume	systems/year	500,000	High volume
Stacks' net power	kW	80	DOE 2012
Stacks' gross power	kW	88	DOE 2012
Cell power density	mW/cm ²	984	DOE 2012
Peak stack temp.	Degree C	87	DOE 2012
Peak stack pressure	Bar	2.5	DOE 2012
System Voltage (rated power)	Volt	300	DOE 2012
Platinum price	\$/tr.oz.	\$1,100	DOE 2012
Pt loading	mg/cm ²	0.196	DOE 2012
Membrane type		Reinforced 3M PFSA	
Membrane thickness	micro meter	25	
GDL layer		None-woven carbon paper	
GDL thickness	micro meter	185	@50 kPa pressure
MPL layer thickness	micro meter	40	
Bipolar plate type		76Fe-20Cr-4V with nitridation surface treatment	
Bipolar plate base material Thickness	micro meter	100	
Seal material		Viton®	

Pt price was \$1,100/tr.oz. for the baseline, which was consistent with other DOE cost studies.

8

We assumed a double-side dispersion coating process (US 2008/0269409) to an ePTFE-supported membrane process.

	ePTFE	3M PFSA Supported Membrane
Thickness (µm)	25	25
Porosity (%)	95%	-
Bulk Density (g/cm ³)	0.098	1.97
Material Cost	\$5/m ²	3M Ionomor:\$80/lbs*

The reinforced 25 μm 3M PFSA membrane is estimated to cost ~\$19/m² on an active area basis, with materials representing ~85% of the cost.

Membrane Manufactured Cost ¹					
Component	Material		Process		
	(\$/m²)	(\$/kg)	(\$/m²)	(\$/kg)	
Film Handling	\$6.33	\$107.64	\$0.34	\$5.78	
Coating	\$10.07	\$171.11	\$0.44	\$7.42	
Drying & Cooling	\$0.00	\$0.00	\$1.98	\$33.64	
Quality Control	\$0.00	\$0.00	\$0.04	\$0.60	
Laminating	\$0.00	\$0.00	\$0.05	\$0.93	
Packaging	\$0.03	\$0.43	\$0.03	\$0.46	
Subtotal	\$16.42	\$279.19	\$2.87	\$48.83	
Total	19.30 (\$/m²)				
	328.02 (\$/kg)				

² 3M PFSA ionomer cost assumed to be \$80/lb based on FCTT feedback.

 3 ePTFE cost assumed to be $\fi)m^2$

Organic whisker support was fabricated by physical vapor deposition (PVD) with vacuum annealing process. Catalysts were coated to this layer via vacuum sputtering process.

The 2012 electrode cost estimate of \$86/m² which was dominated by Platinum price. We have assumed Pt price to be \$1,100/tr.oz. or \$35.4/g.

Manufactured Cost	Anode ¹ (\$/m ²)	Cathode ¹ (\$/m ²)	Total ¹ (\$/m ²)
Material	\$25.97	\$50.33	\$76.30
Capital Cost	\$1.79	\$2.94	\$4.73
Labor	\$0.16	\$0.19	\$0.35
Tooling	\$1.18	\$1.75	\$2.93
Other ²	\$0.53	\$0.76	\$1.29
Total	\$29.63	\$55.97	\$85.60

 1 m² of active area

² Other costs include utilities, maintenance, and building

We cost a non-woven carbon paper GDL with MPL based on discussions with formerly Ballard Material Products on their AvCarb® GDS3250 for automotive applications.

The non-woven carbon paper GDL (for *both* anode and cathode) cost about \$12/m², on an active area basis.

Manufactured Cost ¹	GDL (\$/m²)	GDL (Anode + Cathode) (\$/m ²)
Material	\$0.88	\$1.76
Capital Cost	\$1.86	\$3.71
Labor	\$0.31	\$0.63
Tooling	\$1.88	\$3.76
Other ²	\$0.94	\$1.88
Total	\$5.87	\$11.73

¹ Manufactured cost on an active area basis

² Other costs include utilities, maintenance, and building

80 kW_{net} PEMFC System Stack MEA Assembly Process

The anode and cathode organic whisker layers were hot pressed to the membrane with Teflon[®] backing sheets. GDL layers were laminated to the coated membrane and were formed an MEA in roll good form. The MEA was cut into sheets and molded with a frame seal.

The MEA with frame seal together were estimated to cost about \$128/m².

Manufactured Cost ¹	MEA (\$/m²)	Frame Seal (\$/m ²)	
Material - Membrane - Electrode - GDL	94.48 - 16.42 - 76.30 - 1.76	\$6.07	
Capital Cost	\$9.80	\$1.71	
Labor	\$1.15	\$1.24	
Tooling & Equipment	\$7.60	\$1.46	
Other ²	\$3.63	\$0.70	
Subtotal	\$116.65	\$11.17	
Total	127.83		

¹ Manufactured cost on a per m² of active area basis

² Other costs include utilities, maintenance, and building

 $^{\rm 3}$ Active area to Total area ratio reduced from 85% to 75%, based on feedback from OEMs and FCTT

The metal bipolar plate cost was based on discussions with ORNL on their thermal nitriding process¹ for specific alloys, e.g. Fe-20Cr-4V.

- 1. Nitrided metallic bipolar plates, M.P. Brady, et al., ORNL, DOE Merit Review presentation, May 2009
- 2. US 20090081520 (Hitachi)
- 3. Discussion with Minster Press Inc., April 2010
- 4. Preferential thermal nitridation to form pin-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar plates, M.P. Brady, et al., Scripta Materialia 50 (2004) 1017-1022

The cost of the nitrided Fe-20Cr-4V metal bipolar plates was estimated to be ~\$57/m² or ~\$6/kW.

	Bipola Manufa Cost ¹	r Plate actured (\$/m ²)	Bipola Manuf Cost ²	ar Plate actured (\$/kW)	Bipolar Plate Manufactured Cost (\$57/m ²)
Component	Material	Process	Material	Process	Others 10.5%
Stamping	\$25.02	\$11.06	\$2.78	\$1.23	
Laser Welding	\$0.00	\$8.73	\$0.00	\$0.97	Equipment & Tooling 16.3%
Nitridation	\$0.00	\$12.47	0.00	\$1.39	
Subtotal	\$25.02	\$32.26	\$2.78	\$3.58	
Total	\$57	7.28	\$6	5.36	Labor Cost 11.7%

Capital Costs 17.8%

¹ Manufactured cost on an active area basis

² Manufactured cost on a kW_{net} basis

As a based material, Fe-20Cr-4V is a specialty metal and could have higher price than the conventional base materials, such as SS316, etc.

The cost of the gasket was estimated to be \sim \$7/m².

Manufactured Cost ¹	Gasket (\$/m²)
Material	\$0.62
Capital Cost	\$1.93
Labor	\$1.26
Tooling	\$1.86
Other ²	\$1.18
Total	\$6.85

¹ Manufactured cost on an active area basis ² Other costs include utilities, maintenance, and building

Transfer molding was used to fabricate the seals between the MEA and bipolar/cooling plate. The seal material is Viton[®] which costs ~\$20/lb.

The 80 kW_{net} PEM fuel cell stack cost \$24/kW. Electrodes, bipolar plates, and membranes were the top three cost drivers.

Stack Components	Stack Manufacturin g Cost (\$/kW)	Comments
Membrane	\$2.14	PFSA ionomer (\$80/lb)
Electrode	\$9.51	3M NSTFC
GDL	\$1.30	No-Woven carbon paper
Bipolar Plate	\$6.36	Nitrided metallic plates
Seal	\$2.00	Viton
BOS	\$0.55	Manifold, end plates, current collectors, insulators, tie bolts, etc.
Final Assembly	\$1.40	Robotic assembly
Stack Conditioning	0.60	2 Hours
Total stack ²	23.85	

1. Stack assembly cost category included MEA assembly and stack QC; QC included visual inspection, and leak tests for fuel, air, and coolant loops.

2. Results may not appear to calculate due to rounding of the component cost results.

The water management system OEM cost^{1,2} was projected to be \$128.

Component	Factory Cost ¹	OEM Cost ^{1,2}
Cathode Planar Membrane Humidifier	112	128

- ¹ R. K. Ahluwalia and X. Wang, Automotive Fuel Cell System with NSTFC Membrane Electrode Assemblies and Low Pt Loading, July 21, 2009
- ² High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).
- ³ Assumes 15% markup to the automotive OEM for BOP components

The cathode planar membrane humidifier cost was estimated using bottom-up costing tools.

The thermal management system OEM cost^{1,2} was projected to be \$404.

Component	Factory Cost ¹	OEM Cost ^{1,2}
HT Radiator	86	99
LT Radiator	21	25
Air Precooler	-	20
HT/LT Radiator Fan	-	75
- Motor	-	- 60
- Fan	-	- 15
HT Coolant Pump	-	150
- Motor	-	- 95
- Pump	-	- 55
LT/Air Precooler Coolant Pump	-	30
Other	-	5
Total	387	404

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW). ² Assumes 15% markup to the automotive OEM for BOP components

The air precooler, radiator fan, coolant pumps, and their motors were assumed to be purchased components; hence their price included a markup.

The fuel management system OEM cost^{1,2} was projected to be \$382.

Component	Factory Cost ¹	OEM Cost ^{1,2}
H ₂ Blower	219.5	252
H ₂ Ejectors	-	20
H ₂ Demister	-	61
Solenoid Valves	-	23
Purge Valve	13	15
Check valve	9	10
Total	346	382

Parker Hannifin Brochure for Model 55 Univane[™] Compressor

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

² Assumes 15% markup to the automotive OEM for BOP components

The H₂ ejectors, H₂ demister, and solenoid valves were assumed to be purchased components; hence their price included a markup.

The air management system OEM cost^{1,2} was projected to be \$936.

Component	Factory Cost ¹	OEM Cost ^{1,2}
CEM (Compressor, Expander, Motor, Motor Controller	535	615
Air demister	-	156
Air/H ₂ mixer	-	27
Flow orifice	-	5
Air filter	-	4
Total	-	936

CEM: Honeywell, DOE Program Review, Progress Report & Annual Report, 2005

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW). ² Assumes 15% markup to the automotive OEM for BOP components

The air demister, air/H_2 mixer, flow orifice, and air filter were assumed to be purchased components; hence their price included a markup.

The 80 kW_{net} PEM fuel cell system cost \$53/kW at the mass production volume. Stack, air management, and thermal management were the top three cost drivers.

System Components	System Manufacturing Cost (\$/kW)	Comments	80 kW _{net} PEM Fuel Cell System Cost (\$4,256/system) System Assembly 7.4%
Stack	\$23.87		Balance of System 7.3%
Water management	\$1.6	Cathode side humidifier, etc.	Fuel Management 9.0%
Thermal management	\$5.0	HX, coolant pump, etc.	44.8
Air management	\$10.1	CEM, etc.	Air Management
Fuel management	\$4.8	H2 pump, etc.	19.0% Water
Balance of system	\$3.9	Sensors, controls, wire harness, piping, etc.	Thermal Management Management 3.0% 9.5%
System assembly	\$3.9		
Total system ^{1, 2}	\$53.2		

- 1. Assumed 15% markup to the automotive OEM for BOP components
- 2. Results may not appear to calculate due to rounding of the component cost results.

The 80 kW_{net} direct hydrogen PEM fuel cell system cost \$4,256 at the mass production volume.

Stack 44.8% The 5,000 PSI type IV compressed hydrogen tank design was referenced in studies TIAX conducted on hydrogen storage^{1, 2}.

Compressed Hydrogen Storage System Schematic^{1, 2}

- 1. E. Carlson and Y. Yang, "Compressed hydrogen and PEM fuel cell system," Fuel cell tech team freedomCar, Detroit, MI, October 20, 2004.
- S. Lasher and Y. Yang, "Cost analysis of hydrogen storage systems Compressed Hydrogen On-Board Assessment – Previous Results and Updates for FreedomCAR Tech Team", January , 2007

Key Parameters System Pressure: 5.000 PSI Single Tank Design • Usable H2: 5.6 kg Safety Factor: 2.25 Tank Carbon Fiber: Toray T700S Carbon Fiber Cost: \$12/lbs Carbon Fiber / Resin Ratio: 0.68: 0.32 (weight) Translational Strength Factor: 81.5% Fiber Process: Filament Winding Liner: HDPE **Pressure Regulator** In-tank

The single tank design had a usable hydrogen storage capacity of 5.6 kg.

26

Assumptions for the hydrogen storage tank design were based on the literature review and third-party discussions.

Stack Components	Unit	Current System	Comments
Production volume	systems/year	500,000	High Volume
Usable hydrogen	Kg	5.6	
Recoverable H2 in the tank		IV	With HDPE liner
Tank type		IV	With HDPE liner
Tank pressure	PSI	5,000	
# of tanks	Per System	1	
Safety factor		2.25	
Tank length/diameter ratio		3:1	
Carbon fiber type		Toray T700S	
Carbon fiber cost	\$/lbs	12	
Carbon fiber vs. resin ratio		0.68:0.32	Weight
Carbon fiber translational		01 50/	
Strength factor		01.5%	
Damage resistant outer layer		S Class	Could be replaced
material		3-01a55	by cheaper E-glass
S-Glass cost	\$/lbs	7	
Impact resistant end dome		Digid Ecom	
material		nigiu ruaiti	
Rigid foam cost	\$/kg	3	
Liner material		HDPE	
Liner thickness	Inch	1/4	
In tank regulator cost	\$/unit	150	

A vertically integrated manufacturing process was assumed for the tank and BOP components.

Major Tank Components	Major BOP Components	
Aluminum End Boss	In-tank primary pressure regulator	
HDPE liner	Valves & sensors	
Carbon fiber composite layer	Filling interface	
Glass fiber composite layer	Pressure release devices	
End domes (rigid foam)	Piping & fitting	

In the 5,000 PSI baseline system, the carbon fiber composite layer was the dominant cost driver.

System Components	2012 System Manufacturing Cost (\$/kWh)	Comments
Hydrogen	0.09	5.9 kg H2
Pressure Tank	12.69	
- Liner	- 0.09	
- Carbon fiber layer	- 11.79	Pre-preg carbon fiber cost \$36/kg
- Glass fiber layer	- 0.59	φ00/Ng
- Foam	- 0.22	
Primary pressure regulator	0.80	In-tank design
Valves & sensors	0.86	4 valves, 1 temperature sensor, 1 pressure sensor
Fill port	0.43	
Fittings, piping, safety device, etc.	0.64	Pressure relive valve, burst valve, etc.
Assembly & inspection	0.88	Including pressure test
Total system ²	16.39	

The 5,000 PSI compressed hydrogen storage tank system cost \$3,058 at the mass production volume.

A lithium-ion battery pack will provide hybridization of a fuel cell vehicle which will improves fuel economy as well as having the function as a startup battery.

A vertically integrated manufacturing process was assumed for the four-level battery pack fabrication: electrode, cell, module, and pack.

The lithium-ion battery system cost \$862 /kWh. Battery management system and packaging have higher cost contributions.

Cost Category	Cell Cost (\$/cell)	Pack Cost (\$/pack)
Material	\$7.88	\$775
Labor	\$1.51	\$116.96
Equipment & tooling	\$1.38	\$48.03
Utility	\$0.79	\$26.76
Maintenance	\$0.67	\$23.79
Capital cost	\$1.18	\$37.85
Building	\$0.15	\$5.72
Total	\$13.56	\$1,033.83
Total (\$/kWh)*	\$327.63	\$861.52

* Based on usable energy (1.88 kWh x 0.8 x0.8 = 1.2 /kWh)

The 1.2 kWh lithium-ion battery system cost \$1,034 per pack at the mass production volume.

Conclusion

The overall PEM fuel cell system, onboard hydrogen storage, and hybrid battery costs are approximately \$8,318 per vehicle.

- The mass production manufacturing cost of the 80 kW_{net} PEMFC stack was estimated to be \$23.8/kW.
- The mass production OEM cost of the 80 kW_{net} PEMFC system was estimated to be \$53.2/kW
- The 5.6kg compressed on-board hydrogen storage system was estimated to be \$16.4/kWh at the mass production.
- The hybrid lithium-ion battery (40kW, 1.2kWh) costs \$1,034 per pack.

Thank You!

Contact: Yong Yang Austin Power Engineering LLC 2310 W 9th ST #1, Austin TX 78703 512-469-0138 yang.yong@austinpowereng.com

