(TIAX

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications

Fuel Cell Tech Team Meeting May 16, 2008

Jayanti Sinha Stephen Lasher Yong Yang Peter Kopf TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390

Tel. 617- 498-6125 www.TIAXLLC.com Reference: D0362

© 2008 TIAX LLC

Overview

TIAX has performed PEMFC cost assessments for many years supported by DOE. This current project was initiated in 2006.

Timeline

- Start date: Feb 2006
- Base period: May 2008
 - » 100% complete
- Option period: May 2011

Budget

- Total project funding
 - » Base Period = \$415K
 - » No cost share, no contractors
- ▶ FY07 = \$214K
- FY08 = \$26K authorized to date

Barriers						
 Barriers addressed 						
» A. Cost Cost Targets (\$/kW)						
	2005	2010	2015			
Fuel Cell System	110	45	30			
Fuel Cell Stack 70 25 15						

Manufactured at volume of 500,000 per year.

Partners

- Project lead: TIAX
- Collaborate with ANL on system configuration and modeling
- Feedback from Fuel Cell Tech Team, Developers, Vendors

Objectives

	Objectives
Overall	 Bottom-up manufacturing cost assessment of 80 kW direct-H₂ PEMFC system for automotive applications
	 High-volume (500,000 units/year) cost projection of ANL 2007 PEMFC system configuration assuming an NSTFC-based MEA and a 30 μm 3M-like membrane
2007	 Bottom-up manufacturing cost analysis of BOP components (Bottom- up stack cost analysis completed in FY 2007)
	 Sensitivity analyses on stack and system parameters
	 EOS impacts on 2007 BOP costs (EOS analysis of 2005 stack completed in FY2006)
2008– 2011	 Annual updates of high-volume cost projection Optional: specific analysis topics including cost implications of: Ambient versus pressurized operation High temperature, low humidity operation Lower temperature, low humidity hydrocarbon membrane Alternative PEMFC approaches including cell/stack constructions and BOP components Other topics as the need arises

Our cost assessment includes the fuel cell stack and related BOP subsystems, but does not include electric drive or other necessary powertrain components.

Quality Control (QC) includes leak and voltage tests, but does not include stack conditioning.

Approach Technology Assessment

We worked with Argonne National Laboratory (ANL) to define the 2007 system configuration, performance and component specifications¹.

¹ R.K. Ahluwalia and X. Wang, Reference Fuel Cell System Configurations for 2007: Interim Results, ANL, Feb. 6, 2007

Manufacturing cost estimation involves technology assessment, cost modeling, and industry input to vet assumptions and results.

BOM = Bill of Materials

\$92.50

68 Outliers

78.5 Frequency

\$110.00

Approach Bottom-up Costing Tools

We used two different bottom-up costing tools to determine highvolume (500,000 units/year) manufacturing cost for the major BOP components¹.

Costing Tools

 TIAX Technology-Based Cost Model

Radiator

- > Enthalpy Wheel Humidifier
- Membrane Humidifier
- DFMA[®] Concurrent Costing Software
 - Compressor Expander Module,

 \rightarrow H_2 Blower

¹ We used experience-based estimates (as opposed to bottomup costing) for components such as the enthalpy wheel motor, H_2 blower motor, H_2 ejectors, radiator fan, coolant pump, valves and regulators.

TIAX Technology-Based Cost Model

- Defines process scenarios according to the production volume
- Easily defines both continuous as well as batch processes
- Breaks down cost into various categories, such as material, labor, utility, capital, etc.
- Assumes dedicated process line yields higher cost at low production volumes

DFMA® Concurrent Costing

- Has a wide range of built-in manufacturing databases for traditional batch processes, such as casting, machining, injection molding, etc.
- Initially developed for the automobile industry; not well suited for processes used in manufacture of PEMFC stacks
- Does not assume dedicated process line yields lower cost at low production volumes

Approach Cost Definition

We estimate an automotive OEM cost, applying no markup on stack components, and assuming a 15% markup on BOP components.

Markup applied to BOP components	Factory Cost for Stack and BOP Components				
 Corporate Expenses Research and Development Sales and Marketing General & Administration Warranty Taxes 	 Fixed Costs Operating Tooling & Fixtures Amortization Equipment Maintenance Indirect Labor Cost of operating capital (working period 3 months) Non-Operating Equipment & Building Depreciation Cost of non-operating capital 	 Variable Costs Manufactured Materials Purchased Materials Direct Labor (Fabrication & Assembly) Indirect Materials Utilities 			

Automotive OEM Cost

- We assume a vertically integrated process for the manufacture of the stack by the automotive OEM, so no mark-up is included on the major stack components
- · Raw materials are assumed to be purchased, and therefore implicitly include supplier markup
- We assume 100% debt financed with an annual interest rate of 15%, 10-year equipment life, and 25-year building life.

OEM = Original Equipment Manufacturer (i.e., car company)

Raw materials for stack and BOP components are assumed to be purchased, and therefore implicitly include supplier markup.

PEMFC Sub-system	Raw Materials / Purchased Components
Stack	
Membrane	PFSA ionomer, isopropanol, silicone-treated PET film, polypropylene film, water
Electrodes	Pt, Co, Mn, perylene red (PR-149) dye, aluminum-coated film substrate, Teflon sheet
GDL	Woven carbon fiber, PTFE, carbon powder, water
Seal	Viton
Bipolar Plates	Expanded graphite flake, vinyl ester, carbon fiber, poly dimethylsiloxane (SAG), methyl ethyl ketone peroxide, cobalt naphthenate
BOS	Stack manifold, bolts, end plates, current collector
Balance of Plant	
Water management (enthalpy wheel, membrane humidifier)	Cordierite, γ -alumina, Teflon seals, enthalpy wheel motor, Nafion, Noryl®, PPS, polyurethane, O-rings
Thermal management (radiator, fan, pump)	Aluminum coil, aluminum tube, radiator fan, coolant pump
Air management (CEM, motor controller)	NdFeB magnet, steel bar stock, Teflon insulation, copper coils, steel laminations, bearings, seals, motor controller, wire harness
Fuel management (H ₂ blower, H ₂ ejectors)	SS316 bar, SS316 sheet, seals, H_2 blower motor, H_2 ejectors

For the EOS analysis, we developed three production scenarios - pilot plant, semi-scaled, and full-scaled - to represent a phased advance from proof-of-concept to mature manufacturing process.

- Pilot Plant
 - Low volume production
 - Proof-of-concept of the manufacturing process
 - Goal is to adapt the manufacturing process to high volume production
- Semi-Scaled
 - Low-to-medium volume production
 - Adapted manufacturing process
 - Goal is to validate the manufacturing process for high volume production
- Full-Scaled
 - High volume production
 - Mature manufacturing process
 - Goal is to sustain a low-cost, high-throughput, high-reliability manufacturing process

Material price, process type, process parameters, choice of equipment and level of automation (i.e. equipment capital cost) were varied across the three scenarios.

We contacted developers of key stack and BOP components for their feedback on design, performance and cost assumptions.

Contacted in 2005-2006

- MEA
 - > 3M, DuPont, Gore
- GDL
 - ➢ E-Tek
 - SpectraCorp, Toray, SGL Carbon
- Bipolar Plates
 - Porvair, GrafTech, SGL Carbon
 - Raw Materials Superior Graphite, Asbury Carbons
- Seals
 - Freudenberg, SGL Carbon
- Stack and System Integrators
 - Ballard
 - Tech Team (GM, Ford, Chrysler)

Contacted in 2007

• MEA

- ≻ 3M
- Water Management
 - PermaPure (Nafion membranebased)
 - Emprise (enthalpy wheel)
- Thermal Management
 - ➤ Modine
- Air Management
 - Honeywell (compressorexpander-motor)
- Fuel management
 - Parker Hannifin
 - ≻ H₂ Systems

Results CFM Overview

We estimated the cost of the CEM based on published presentations, reports, and patents from Honeywell.

CEM: Honeywell, DOE Program Review, Progress Report & Annual Report, 2005

CEM Motor Controller: Honeywell, DOE Program Review, Progress Report & Annual Report, 2005

CEM Schematic: Honeywell, DOE Progress Report, 2000

Motor: Honeywell, DOE Merit Review, 2004

Volume: 15 Liters Weight: 20 kg

Turbine, Compressor, Shaft: Honeywell, DOE Merit Review, 2003

Journal Bearing: Honeywell, Fuel Cell Seminar, 2005

Unison Ring and Variable Nozzle Turbine of Garrett VNT25

Unison Rina: Garrett/Honeywell, Final Report, DE-FC05-00OR22809, 2005

The motor rotor manufacturing process represents the level of detail we captured in the costing of the CEM.

CEM Motor Rotor Manufacturing Process

¹ Boothroyd Dewhurst Machining package

Results CEM Bill of Materials

The estimated CEM (including motor and motor controller) factory cost is \$535 per unit¹.

										Wall			
										Thickness	Total Vol.	Total Wt.	Final Total
#	Part Name	Quantity	Reference	Ref. Part #	Material	OD (cm)	L (cm)	W (cm)	H (cm)	(cm)	(Cm^3)	(kg)	Cost (\$)
1	Turbine Housing	1	US6269642	24	AI	20.32			7.62	0.16	127.19	0.34	\$ 5.46
2	Bolt	6			Misc	0.60	1.20				2.03	0.02	\$ 0.72
3	Washer	6			Misc	0.60	0.10					0.01	\$ 0.72
4	Tie Rod	1	US6269642	30	Steel	1.00	4.00				3.14	0.02	\$ 3.70
5	Turbine Wheel	1			Al	5.00	5.00					0.20	\$ 20.07
6	Variable Vane Assembly		100000010			47.70				0.00	00.40	0.00	<u> </u>
	Nozzle Wall	1	US6269642	38	Steel	17.78	0.50	0.50		0.30	36.46	0.28	\$ 2.61
8	Vane	9	056269642	36	Steel	3.00	0.50	0.50			6.75	0.47	\$ 2.34 © 2.54
10	Varie Post	9	036269642	40	Steel	0.20	1.00	0.20	0.20		0.20	0.02	3 2.54 € 2.62
11	Heigen Bing	9	036269642	44	Steel	15.04	0.50	0.30	0.50		04.00	0.06	⊉ ∠.03 € 10.00
12	Actuator Crank	1	030205042	40 50	Steel	10.24	2.00	1.00	1.00		2.00	0.00	\$ 13.33 \$ 1.18
12	Crank Buching	1	1196269642	50	Steel	1.20	1.00	1.00	1.00	0.10	2.00	0.02	\$ 0.07
14	Crank Gear	1	030203042	62	Steel	2.00	1.00			0.10	2.36	0.02	\$ 4.28
14	Crank Gear Din	1	030203042	64	Steel	0.20	2.00			0.50	2.30	0.02	\$ 0.17
16	Crank End Bearing	1	US6269642	66	Misc	0.20	2.00				3.00	0.00	\$ 2.22
17	Actuator Housing	1	000200042		AI	20.32	1.50			2.54	212.71	0.57	\$ 6.10
18	Solenoid Valve	1	US6269642	85	Misc	20.02	1.00			2.01	212.11	0.20	\$ 5.07
19	Solenoid Valve Bracket	1	US6269642	108	Steel		3.00	1.20		0.20	0.72	0.01	\$ 0.18
20	Solenoid Valve Bracket Bolt	1	US6269642	110		0.40	1.00				0.13	0.00	\$ 0.12
21	Washer	1	US6269642			0.60				0.10		0.00	\$ 0.12
22	Rack Gear Rod	1	US6269642	88		0.60	6.00				1.70	0.01	\$ 0.53
23	Motor Rotor Assembly												\$ -
24	Connecting Shaft	1	US5605045	16	Steel	3.61	20.32			0.00	207.88	1.62	\$ 10.71
25	Thermal Insulation	1	US5605045	60	Teflon	3.81	12.70			0.10	14.79	0.03	\$ 1.22
26	NdFeB Magnet	4	US5605045	62	NdFeB	4.68	12.70			0.44	73.64	0.55	\$ 48.88
27	Collar	1	US5605045	70	Steel	5.08	12.70			0.20	38.92	0.30	\$ 7.65
28	Labyrith Seal	1	US2006/0153704	130	Misc	3.61				1.00		0.02	\$ 2.07
29	Jounal Foil Bearing	1	US2006/0153705		Steel	3.61	5.08					0.10	\$ 10.42
30	Motor Housing	1	DE-FC36-02AL67624		AI	20.32	20.32			0.20	432.55	1.17	\$ 10.58
31	Bolt	8			Misc	0.60	1.20				2.03	0.02	\$ 0.96
32	Washer	8			Misc	0.60	0.10				0.00	0.02	\$ 0.96
33	Motor Stator Assembly	1	FY2000 Progress Report		Misc	9.20	12.70			2.00	574.24	4.59	\$ 26.30
34	Motor Sator Position Ring	1	FY2000 Progress Report			0.00	4.00	0.00	0.00		0.00		\$ 0.07
35	Bolt	8	FY2000 Progress Report		Misc	0.60	1.20	0.00	0.00	0.00	2.03	0.02	\$ 0.96
36	VVasher	8	FY2000 Progress Report		Misc	0.60	0.10	0.00	0.00	0.00	0.00	0.02	\$ 0.96
3/	Motor Connect		E)(2000 B		IVIISC	2.04						0.00	\$ 0.57
38	Labyrith Seal	1	F 12000 Progress Report		IVIISC Chaol	J.61	7.00				40.50	0.02	\$ 2.07 © 7.00
39	Thrust Dearing Runner	-	FY2000 Progress Report		Steel	5.00	5.00				40.52	0.32	3 7.00
40	Thrust Bearing Thrust Bearing Holdon	2	EV2000 Progress Report		Steel	5.00	5.00				10/ 00	0.20	⊉ ∠0.03
41	Loburith Sool	1	T 12000 Progress Report		Mico	17.70	0.00				124.00	0.57	¢ 0.00
42	Labynth Sear Journal Foil Bearing	1	1152006/0163705		Misc	3.61	5.08					0.02	\$ 10.42
43	Compressor Housing	1	EV2000 Progress Penort		AL	25.40	3.00		7.62	0.16	134.69	0.10	\$ 5.46
44	Bolt	8	EV2000 Progress Report		Miec	23.40	1.20	0.00	0.02	0.10	2.03	0.00	\$ 0.40 \$ 0.96
45	\&/asher	8	EV2000 Progress Report		Misc	0.00	0.10	0.00	0.00	0.00	2.00	0.02	\$ 0.96
40	Compressor Impeller	1	EY2000 Progress Report		AI	0.00	0.10	0.00	0.00	0.00	0.00	0.01	\$ 20.07
48	Compressor Impeller Tie Rod	1	EY2000 Progress Report		Misc	1.00	10.00				7.85	0.20	\$ 0.53
49	CEM Mounting Bracket Left	1			Steel		25.40	7.62		0.10	19.35	0.15	\$ 0.90
50	CEM Mounting Bracket Right	1			Steel		25.40	7.62	0.00	0.10	19.35	0.15	\$ 0.90
51	Control Box Assembly	1	DOE target \$40/kW / 5.5kW	/ input								6.50	\$ 250.83
52	Box	1		P =-									
53	Integrated Motor Cable	1											
54	Inverter	1											
55	EMI Section	1											
56	Wire Harness & Cooling pipes	1											
											Total Cost	(\$/unit)	\$ 535.40

¹ Estimates are not accurate to the number of significant figures shown.

The motor assembly and motor controller are projected to cost \$412, representing 77% of the CEM cost.

Motor Subsystems	Components	Manufactured Cost (\$)	Comments
	Copper Coils		Assumed purchased part. The price is direct
Stator Assembly	Steel Laminations	26	materials with a markup of 1.15. 1 kg copper coil (\$7/kg) and 3.6 kg laminated steel (\$4.4/kg) with a markup of 1.15.
	Shaft	11	DFMA machining package
	Magnets	49	0.55 kg NdFeB magnet with a cost of \$88/kg
Rotor Assembly	Journal Foil Bearing	21	Assumed purchased part at \$10 each
	Thrust Journal Bearings	21	Assumed purchased part at \$10 each
	Thrust Bearing Runner	8	DFMA machining package
	Thrust Bearing Holder	9	DFMA machining package
	Seals, collar, etc.	17	Assumed purchased parts
Motor Controller	5.5 kW Inverter with DSP controller	220	\$40/kW from "A Novel Bidirectional Power Controller for Regenerative Fuel Cells", Final Report for DE-FG36-04GO14329, J. Hartvigsen and S.K. Mazumder, Oct. 10, 2005
	Packaging, Wire harness, thermal management, etc	31	
Total Motor Cost (\$/u	unit)	412	

The 5.5 kW inverter is projected to dominate the motor controller cost.

The CEM factory cost (without supplier markup) of \$535, is the largest contributor to the overall BOP cost.

CEM Manufactured Cost (\$)					
Component	OEM Cost ¹				
Motor	162				
Motor Controller	251				
Variable Vane Assembly	50				
Housing	28	615			
Turbine Assembly	24				
Compressor Assembly	21				
Total:	535				

¹ Assumes 15% markup to the automotive OEM

We costed the H₂ recirculating blower based on published information and patents on the Parker Hannifin Model 55 Univane[™] rotary compressor.

Parker Hannifin Brochure for Model 55 Univane™ Compressor

Overall Dimensions from Parker Hannifin Brochure for Model 55 Univane™ Compressor

Volume: 5 Liters Weight: 6.9 kg

The blower housing manufacturing process represents the level of detail we captured in the costing¹ of the H_2 blower.

H₂ Blower Housing Manufacturing Process

¹ Boothroyd Dewhurst Concurrent Costing & Machining packages

The projected H_2 blower cost is \$193 per unit¹.

# Part Name Quantity Material OD (cm) L (cm) W (cm) Thickness Total Vol. (Cm ³) Total Vol. (Cm ³								Wall				
# Part Name Quantity Material OD (cm) L (cm) W (cm) (cm) (Cm^A) (kg) Cost (§) 1 100We DC Motor 1 Misc 16.51 8.89 . . 1.00 \$ 40.21 2 End Piale (motor side) 1 SS316 16.51 2.54 0.32 96.48 0.75 \$ 13.33 3 Screw 4 Misc 13.97 . 0.01 \$ 0.02 \$ 0.48 4 O-Ring 1 Misc 5.08 . 0.01 \$ 0.20 7 C-Cip 1 SS316 5.08 . 0.01 \$ 0.20 9 Blower Housing 1 SS316 5.08 . 0.02 \$ 2.07 9 Blower Housing 1 SS316 13.97 . 0.01 \$ 0.57 12 Compressor Shaft 1 SS316 1.59 12.70 25.12 0.20 \$ 9.71 13 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Thickness</td><td>Total Vol.</td><td>Total Wt.</td><td>Fir</td><td>nal Total</td></td<>								Thickness	Total Vol.	Total Wt.	Fir	nal Total
1100We DC Motor 1 Nisc 16.51 2.89 100 \$ 4021 2 End Plate (motor side) 1 SS316 16.51 2.54 0.32 96.48 0.75 \$ 13.33 3 Screw 4 Misc 1.37 0.01 \$ 0.57 \$ 13.33 4 O-Ring 1 Misc 5.08 0.01 \$ 0.57 5 Labyrith Seal (main) 1 Misc 5.08 0.01 \$ 0.50 7 L-Cip 1 SS316 5.08 0.01 \$ 0.20 7 B Labyrith Seal 1 Misc 4.45 0.01 \$ 0.01 \$ 0.20 7 B Labyrith Seal 1 Misc 13.97 0.00 \$ 0.02 \$ 2.07 9 Bower Housing 1 SS316 15.24 8.89 0.32 106.65 0.83 \$ 16.81 10 Screw 8 Misc 13.97 0.01 \$ 0.57 12 Compressor Shaft 1 SS316 <td>#</td> <td>Part Name</td> <td>Quantity</td> <td>Material</td> <td>OD (cm)</td> <td>L (cm)</td> <td>W (cm)</td> <td>(cm)</td> <td>(Cm^3)</td> <td>(kg)</td> <td>c</td> <td>ost (\$)</td>	#	Part Name	Quantity	Material	OD (cm)	L (cm)	W (cm)	(cm)	(Cm^3)	(kg)	c	ost (\$)
2 End Plate (motor side) 1 SS316 16.51 2.54 0.32 96.48 0.75 \$ 13.33 3 Screw 4 Misc 13.97 0.02 \$ 0.48 4 O-Ring 1 Misc 5.08 1.27 0.001 \$ 0.27 5 Labyrith Seal (main) 1 SS316 5.08 0.01 \$ 0.01 \$ 0.207 6 O-Ring Misc 5.08 0.01 \$ 0.01 \$ 0.207 7 [C-Clip 1 SS316 15.24 8.89 0.32 106.65 0.83 \$ 16.88 10 Screw 8 Misc 13.97 0.01 \$ 0.57 12 Compressor Shaft 1 SS316 1.524 8.89 0.32 106.65 0.83 \$ 6.29 13 Bearing 2 SS316 7.62 1.27 1.27 32.06 <td< td=""><td>1</td><td>100We DC Motor</td><td>1</td><td>Misc</td><td>16.51</td><td>8.89</td><td></td><td></td><td></td><td>1.00</td><td>\$</td><td>40.21</td></td<>	1	100We DC Motor	1	Misc	16.51	8.89				1.00	\$	40.21
3 Screw 4 Misc 13.97 0.01 \$ 0.02 \$ 0.48 4 O-Ring 1 Misc 13.97 0.01 \$ 0.57 6 Labyrith Seal (main) 1 Misc 5.08 0.01 \$ 0.20 6 O-Ring Misc 5.08 0.01 \$ 0.20 7 C-Clip 1 SS316 5.08 0.02 \$ 0.20 9 Blower Housing 1 SS316 15.24 8.89 0.32 106.65 0.83 \$ 16.88 01 Screw 8 Misc 13.97 0.01 \$ 0.96 12 Compressor Shaft 1 SS316 1.59 12.70 25.12 0.20 \$ 9.71 13 Bearing 2 SS316 3.81 2.54 28.94 0.23 \$ 19.11 14 Seal 2 Misc 3.81 0.01 \$ 0.57 15 Rotor 1 A 10.16 7	2	End Plate (motor side)	1	SS316	16.51	2.54		0.32	96.48	0.75	\$	13.33
4 O-Ring 1 Misc 13.97 0.01 \$0.57 5 Labyrith Seal (main) 1 Misc 5.08 1.27 0.02 \$2.07 6 O-Ring Misc 5.08 0.01 \$0.20 \$2.07 7 C-Cip 1 SS316 5.08 0.01 \$0.20 \$2.07 8 Labyrith Seal 1 Misc 4.45 0.01 \$0.20 \$2.07 9 Blower Housing 1 SS316 15.24 8.89 0.32 106.65 0.83 \$16.85 10 Screw 8 Misc 13.97 0.01 \$0.57 12 Compressor Shaft 1 SS316 1.59 12.70 25.12 0.20 \$9.71 13 Bearing 2 SS316 7.62 2.84 0.23 \$ 9.11 14 Seal 2 Misc 7.62 1.27 30.8.73 0.83 \$ 6.29 16 <	3	Screw	4	Misc						0.02	\$	0.48
5 Labyrith Seal (main) 1 Misc 5.08 1.27 0 0.02 \$ 2.07 6 O-Ring Misc 5.08 0 0.01 \$	4	O-Ring	1	Misc	13.97					0.01	\$	0.57
6 O-Ring Misc 5.08 0 0.01 \$ 0.20 7 C-Clip 1 SS316 5.08 0.01 \$ 0.17 8 Labyrith Seal 1 Misc 4.45 0.02 \$ 2.07 9 Blower Housing 1 SS316 15.24 8.89 0.32 106.65 0.83 \$ 16.88 10 Screw 8 Misc 0.01 \$ 0.01 \$ 0.96 11 O-Ring 1 Misc 13.97 25.12 0.01 \$ 0.57 12 Compressor Shaft 1 SS316 3.81 2.54 28.94 0.23 \$ 9.71 13 Bearing 2 Misc 3.81 2.64 0.01 \$ 0.57 14 Seal 2 Misc 3.81 2.64 0.23 \$ 9.71 13 Bearing 2 Misc 7.62 1.27 1.27 32.06 0.5	5	Labyrith Seal (main)	1	Misc	5.08	1.27				0.02	\$	2.07
7 C-Clip 1 SS316 5.08 0.01 \$0.17 0.01 \$0.17 8 Labyrith Seal 1 Misc 4.45 0.02 \$2.07 9 Blower Housing 1 SS316 15.24 8.89 0.32 106.65 0.83 \$ 16.88 10 Screw 8 Misc 13.97 0 0.01 \$ 0.971 13 Bearing 2 SS316 1.59 12.70 25.12 0.01 \$ 0.971 14 Seal 2 Misc 3.81 2.54 28.94 0.23 \$ 19.11 14 Seal 2 Misc 3.81 - 0.01 \$ 0.54 16 Vane Guide 2 SS316 7.62 1.27 1.27 32.06 0.50 \$ 30.42 18 Vane 1 SS316 7.62 2.54 1.27 24.58 0.19 \$ 3	6	O-Ring		Misc	5.08					0.01	\$	0.20
8 Labyrith Seal 1 Misc 4.45 0 0.02 \$ 2.07 9 Blower Housing 1 SS316 15.24 8.89 0.32 106.65 0.83 \$ 16.88 0 Screw 8 Misc 0 0.96 0.01 \$ 0.96 11 O-Ring 1 Misc 13.97 0 25.12 0.20 \$ 9.71 12 Compressor Shaft 1 SS316 3.81 2.54 28.94 0.23 \$ 9.71 14 Seal 2 Misc 3.81 2.54 28.94 0.23 \$ 19.11 14 Seal 2 Misc 7.62 308.73 0.83 \$ 6.29 16 Vane Guide Bearing 2 Misc 7.62 1.27 1.27 32.06 0.50 \$ 3.06 18 Vane Guide Bearing 2 SS316 1.35 0.01 \$ 0.24 21 Inlet Manifold 1 SS316 4.45	7	C-Clip	1	SS316	5.08					0.01	\$	0.17
9 Blower Housing 1 SS316 15.24 8.89 0.32 106.65 0.83 \$ 16.88 10 Screw 8 Misc 13.97 0.04 \$ 0.96 11 O-Ring 1 Misc 13.97 25.12 0.20 \$ 9.71 13 Bearing 2 SS316 1.59 12.70 25.12 0.20 \$ 9.71 13 Bearing 2 SS316 3.81 2.54 28.94 0.23 \$ 19.11 14 Seal 2 Misc 3.81 0.01 \$ 0.54 16 Vane Guide 2 SS316 7.62 1.27 30.873 0.83 \$ 6.29 17 Vane Guide Bearing 2 Misc 7.62 2.54 1.27 24.58 0.19 \$ 2.94 18 Vane 1 SS316 0.45 8.89 0.64 35.17 0.27	8	Labyrith Seal	1	Misc	4.45					0.02	\$	2.07
10 Screw 8 Misc 1 Nisc 13.97 0 0.04 \$ 0.96 11 O-Ring 1 Misc 13.97 0 25.12 0.20 \$ 9.71 13 Bearing 2 SS316 3.81 2.54 28.94 0.23 \$ 19.11 14 Seal 2 Misc 3.81 2.54 28.94 0.23 \$ 19.11 14 Seal 2 Misc 3.81 0 0.01 \$ 0.54 15 Rotor 1 Al 10.16 7.62 308.73 0.83 \$ 6.29 16 Vane Guide Bearing 2 Misc 7.62 1.27 1.27 24.58 0.19 \$ 3.042 18 Vane Guide Bearing 2 Misc 7.62 0.64 35.17 0.27 \$ 5.11 20 C-Clip 2 SS316 1.45 8.89	9	Blower Housing	1	SS316	15.24	8.89		0.32	106.65	0.83	\$	16.88
11 O-Ring 1 Misc 13.97 0 0.01 \$ 0.57 12 Compressor Shaft 1 SS316 1.59 12.70 25.12 0.00 \$ 9.71 13 Bearing 2 SS316 3.81 2.54 28.94 0.23 \$ 19.11 14 Seal 2 Misc 3.81 2.54 0.01 \$ 0.57 14 Seal 2 Misc 3.81 2.54 28.94 0.23 \$ 19.11 14 Seal 2 Misc 3.81 2.54 0.001 \$ 0.57 15 Rotor 1 Al 10.16 7.62 308.73 0.83 \$ 6.29 16 Vane Guide Bearing 2 Misc 7.62 1.27 1.27 24.58 0.19 \$ 2.95 19 Vane Shaft 1 SS316 0.95 9.62 6.85 0.05 \$ 3.06 21 Inel Manifold 1 SS316 1.45 8.89 0.64 35.17 0.27 \$ 5.11 22 <t< td=""><td>10</td><td>Screw</td><td>8</td><td>Misc</td><td></td><td></td><td></td><td></td><td></td><td>0.04</td><td>\$</td><td>0.96</td></t<>	10	Screw	8	Misc						0.04	\$	0.96
12 Compressor Shaft 1 SS316 1.59 12.70 25.12 0.20 \$ 9.71 13 Bearing 2 SS316 3.81 2.54 28.94 0.23 \$ 19.11 14 Seal 2 Misc 3.81 2.54 0.011 \$ 0.54 15 Rotor 1 Al 10.16 7.62 308.73 0.83 \$ 6.29 16 Vane Guide Bearing 2 Misc 7.62 1.27 1.27 32.06 0.50 \$ 10.48 17 Vane Guide Bearing 2 Misc 7.62 - - \$ 30.42 18 Vane 1 SS316 0.95 9.62 6.85 0.05 \$ 3.06 20 C-Clip 2 SS316 1.35 - 0.011 \$ 0.27 23 Screw 4 Misc 5.08 3.81 0.01 \$ 0.57 24 Fitting 1 SS316 4.45 5.	11	O-Ring	1	Misc	13.97					0.01	\$	0.57
13 Bearing 2 SS316 3.81 2.54 28.94 0.23 \$ 19.11 14 Seal 2 Misc 3.81 - - 0.01 \$ 0.54 15 Rotor 1 Al 10.16 7.62 - 308.73 0.83 \$ 6.29 16 Vane Guide 2 SS316 7.62 1.27 1.27 32.06 0.50 \$ 30.42 18 Vane 1 SS316 7.62 - - \$ 30.42 18 Vane 1 SS316 0.95 9.62 - 6.85 0.05 \$ 3.06 20 C-Clip 2 SS316 1.35 - - 0.01 \$ 0.24 21 Inlet Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 22 Seal 1 Misc 5.08 3.81 - 0.01 \$ 0.27 33 Screw 4 Misc 5.08 3.81 0.01 \$ 0.27 26 <td>12</td> <td>Compressor Shaft</td> <td>1</td> <td>SS316</td> <td>1.59</td> <td>12.70</td> <td></td> <td></td> <td>25.12</td> <td>0.20</td> <td>\$</td> <td>9.71</td>	12	Compressor Shaft	1	SS316	1.59	12.70			25.12	0.20	\$	9.71
14 Seal 2 Misc 3.81 0 0.01 \$ 0.54 15 Rotor 1 Al 10.16 7.62 308.73 0.83 \$ 6.29 16 Vane Guide 2 SS316 7.62 1.27 32.06 0.50 \$ 10.48 17 Vane Guide Bearing 2 Misc 7.62 2.54 1.27 24.58 0.19 \$ 2.95 19 Vane Shaft 1 SS316 0.95 9.62 6.85 0.05 \$ 3.062 20 C-Clip 2 SS316 1.35 0.64 35.17 0.27 \$ 5.11 22 Seal 1 Misc 5.08 3.81 0.01 \$ 0.27 23 Screw 4 Misc 2.54 0.64 35.17 0.27 \$ 5.11 24 Fitting 1 SS316 4.45 5.08 0.64 35.17 0.27 \$ 5.11 25 O-Ring 1	13	Bearing	2	SS316	3.81	2.54			28.94	0.23	\$	19.11
15 Rotor 1 Al 10.16 7.62 308.73 0.83 \$ 6.29 16 Vane Guide 2 SS316 7.62 1.27 1.27 32.06 0.50 \$ 10.48 17 Vane Guide Bearing 2 Misc 7.62 - - - \$ 30.42 18 Vane 1 SS316 0.95 9.62 - 6.85 0.05 \$ 3.06 20 C-Clip 2 SS316 1.35 - - - 0.01 \$ 0.24 21 Inlet Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 22 Seal 1 Misc - - 0.01 \$ 0.57 23 Screw 4 Misc 2.54 - - 0.01 \$ 0.27 26 O-Ring 1 Misc 2.54 - - 0.01 \$ 0.57 28 Screw 4	14	Seal	2	Misc	3.81					0.01	\$	0.54
16 Vane Guide 2 SS316 7.62 1.27 1.27 32.06 0.50 \$ 10.48 17 Vane Guide Bearing 2 Misc 7.62 - - - \$ 30.42 18 Vane 1 SS316 7.62 2.54 1.27 24.58 0.19 \$ 2.95 19 Vane Shaft 1 SS316 0.95 9.62 6.85 0.05 \$ 3.06 20 C-Clip 2 SS316 1.35 - - 0.01 \$ 0.24 21 Inlet Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 22 Seal 1 Misc - - 0.01 \$ 0.57 23 Screw 4 Misc - - 0.01 \$ 0.27 25 O-Ring 1 Misc 5.08 3.81 - 0.01 \$ 0.57 26 Outlet Manifold 1 SS316 <td>15</td> <td>Rotor</td> <td>1</td> <td>Al</td> <td>10.16</td> <td>7.62</td> <td></td> <td></td> <td>308.73</td> <td>0.83</td> <td>\$</td> <td>6.29</td>	15	Rotor	1	Al	10.16	7.62			308.73	0.83	\$	6.29
17 Vane Guide Bearing 2 Misc 7.62 \$ 30.42 18 Vane 1 SS316 7.62 2.54 1.27 24.58 0.19 \$ 2.95 19 Vane Shaft 1 SS316 0.95 9.62 6.85 0.05 \$ 30.62 20 C-Clip 2 SS316 1.35 0.01 \$ 0.24 21 Intel Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 22 Seal 1 Misc 5.08 3.81 0.01 \$ 0.27 \$ 5.11 23 Screw 4 Misc 0.64 35.17 0.27 \$ 0.48 24 Fitting 1 S316 4.45 5.08 0.64 35.17 0.27 \$ 0.27 25 O-Ring 1 Misc 5.08 3.81 0.64 35.17 0.27 \$ 5.11 26 Utet Manifold 1 SS316 4.45 8.89 0.64 35.17	16	Vane Guide	2	SS316	7.62	1.27		1.27	32.06	0.50	\$	10.48
18 Vane 1 SS316 7.62 2.54 1.27 24.58 0.19 \$ 2.95 19 Vane Shaft 1 SS316 0.95 9.62 6.85 0.05 \$ 3.06 20 C-Clip 2 SS316 1.35 0.01 \$ 0.24 21 Inlet Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 22 Seal 1 Misc 5.08 3.81 0.01 \$ 0.57 23 Screw 4 Misc 5.08 3.81 0.01 \$ 0.27 24 Fitting 1 SS316 4.45 5.08 3.81 0.01 \$ 0.27 25 O-Ring 1 Misc 2.54 0.64 35.17 0.27 \$ 5.11 26 Outlet Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 27 Seal 1 Misc 0.01	17	Vane Guide Bearing	2	Misc	7.62						\$	30.42
19 Vane Shaft 1 SS316 0.95 9.62 6.85 0.05 \$ 3.06 20 C-Clip 2 SS316 1.35 0.01 \$ 0.24 21 Inlet Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 22 Seal 1 Misc 5.08 3.81 0.01 \$ 0.57 23 Screw 4 Misc 5.08 3.81 0.010 \$ 0.57 23 Screw 4 Misc 2.54 0.010 \$ 0.27 26 O-Ring 1 Misc 2.54 0.01 \$ 0.27 26 Outlet Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 27 Seal 1 Misc 5.08 3.81 0.01 \$ 0.57 28 Screw 4 Misc 0.64 35.17 0.27 \$ 5.11 30	18	Vane	1	SS316		7.62	2.54	1.27	24.58	0.19	\$	2.95
20 C-Clip 2 SS316 1.35 0 0.01 \$ 0.24 21 Inlet Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 22 Seal 1 Misc 5.08 3.81 0.01 \$ 0.57 23 Screw 4 Misc 0.02 \$ 0.48 24 Fitting 1 SS316 4.45 5.08 0.01 \$ 0.57 25 O-Ring 1 SS316 4.45 5.08 0.01 \$ 0.27 26 Outlet Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 27 Seal 1 Misc 5.08 3.81 0.01 \$ 0.27 28 Screw 4 Misc 5.08 3.81 0.01 \$ 0.57 30 O-Ring 1 SS316 4.45 5.08 0.64 35.17 0.22 \$ 0.48 <td>19</td> <td>Vane Shaft</td> <td>1</td> <td>SS316</td> <td>0.95</td> <td>9.62</td> <td></td> <td></td> <td>6.85</td> <td>0.05</td> <td>\$</td> <td>3.06</td>	19	Vane Shaft	1	SS316	0.95	9.62			6.85	0.05	\$	3.06
21 Inlet Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 22 Seal 1 Misc 5.08 3.81 0.01 \$ 0.57 23 Screw 4 Misc 0.01 \$ 0.57 23 Screw 4 Misc 0.01 \$ 0.57 24 Fitting 1 SS316 4.45 5.08 0.02 \$ 0.48 24 Fitting 1 SS316 4.45 5.08 0.01 \$ 0.27 25 O-Ring 1 Misc 2.54 0.64 35.17 0.27 \$ 5.11 26 Outlet Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 27 Seal 1 Misc 5.08 3.81 0.01 \$ 0.57 28 Screw 4 Misc 5.08 3.81 0.01 \$ 0.57 30 O-Ring 1 Misc 2.54 0.64 0.01 \$ 0.27 31	20	C-Clip	2	SS316	1.35					0.01	\$	0.24
22 Seal 1 Misc 5.08 3.81 0.01 \$ 0.57 23 Screw 4 Misc 0.02 \$ 0.48 24 Fitting 1 SS316 4.45 5.08 0.01 \$ 0.57 25 O-Ring 1 Misc 2.54 0.01 \$ 0.27 26 Outlet Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 27 Seal 1 Misc 5.08 3.81 0.64 35.17 0.27 \$ 5.11 27 Seal 1 Misc 5.08 3.81 0.64 35.17 0.27 \$ 5.11 28 Screw 4 Misc 0.01 \$ 0.57 28 Screw 4 Misc 0.04 \$ 0.02 \$ 0.48 29 Fitting 1 SS316 4.45 5.08 0.010 \$ 0.27 30 O-Ring 1 Misc 2.54 <t< td=""><td>21</td><td>Inlet Manifold</td><td>1</td><td>SS316</td><td>4.45</td><td>8.89</td><td></td><td>0.64</td><td>35.17</td><td>0.27</td><td>\$</td><td>5.11</td></t<>	21	Inlet Manifold	1	SS316	4.45	8.89		0.64	35.17	0.27	\$	5.11
23 Screw 4 Misc 0 0 0.02 \$ 0.48 24 Fitting 1 SS316 4.45 5.08 0 0.10 \$ 1.07 25 O-Ring 1 Misc 2.54 0 0.01 \$ 0.27 26 Outlet Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 27 Seal 1 Misc 5.08 3.81 0.01 \$ 0.57 28 Screw 4 Misc 5.08 3.81 0.01 \$ 0.57 30 O-Ring 1 SS316 4.45 5.08 0.01 \$ 0.02 \$ 0.48 29 Fitting 1 SS316 4.45 5.08 0.01 \$ 0.27 30 O-Ring 1 Misc 2.54 0.01 \$ 0.02 \$ 0.48 32 Screw 8 Misc 0.64 72.36 0.56 \$ 11.69 33 O-Ring 1 Misc 8.89 0.64 28.94 0.23	22	Seal	1	Misc		5.08	3.81			0.01	\$	0.57
24 Fitting 1 SS316 4.45 5.08 0 0.10 \$ 1.07 25 O-Ring 1 Misc 2.54 0 0.01 \$ 0.27 26 Outlet Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 27 Seal 1 Misc 5.08 3.81 0.01 \$ 0.57 28 Screw 4 Misc 5.08 3.81 0.02 \$ 0.48 29 Fitting 1 SS316 4.45 5.08 0.04 72.36 0.64 1.07 30 O-Ring 1 Misc 2.54 0.01 \$ 0.27 1.07 31 End Plate 1 SS316 15.24 3.81 0.64 72.36 0.56 \$ 11.69 32 Screw 8 Misc 0.64 72.36 0.56 \$ 11.69 33 O-Ring 1 Misc 8.89 0.64 28.94 0.23 \$ 2.00 35 Screw 4 Misc	23	Screw	4	Misc						0.02	\$	0.48
25 O-Ring 1 Misc 2.54 0.01 \$ 0.27 26 Outlet Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 27 Seal 1 Misc 5.08 3.81 0.01 \$ 0.57 28 Screw 4 Misc 5.08 3.81 0.01 \$ 0.57 28 Screw 4 Misc 5.08 3.81 0.02 \$ 0.48 29 Fitting 1 SS316 4.45 5.08 0.01 \$ 0.27 30 O-Ring 1 Misc 2.54 0.01 \$ 0.27 31 End Plate 1 SS316 15.24 3.81 0.64 72.36 0.56 \$ 11.69 32 Screw 8 Misc 2.54 2.64 2.64 2.64 2.64 2.64 0.04 \$ 0.27 33 O-Ring 1 Misc 8.89 2.64 2.36 \$ 2.00 34 End Cover 1 SS316 7.62 <t< td=""><td>24</td><td>Fitting</td><td>1</td><td>SS316</td><td>4.45</td><td>5.08</td><td></td><td></td><td></td><td>0.10</td><td>\$</td><td>1.07</td></t<>	24	Fitting	1	SS316	4.45	5.08				0.10	\$	1.07
26 Outlet Manifold 1 SS316 4.45 8.89 0.64 35.17 0.27 \$ 5.11 27 Seal 1 Misc 5.08 3.81 0.01 \$ 0.57 28 Screw 4 Misc 5.08 3.81 0.02 \$ 0.48 29 Fitting 1 SS316 4.45 5.08 0.01 \$ 0.02 \$ 0.48 29 Fitting 1 SS316 4.45 5.08 0.01 \$ 0.27 30 O-Ring 1 Misc 2.54 0.04 72.36 0.56 \$ 11.69 32 Screw 8 Misc 0.04 \$ 0.27 \$ 0.01 \$ 0.27 33 O-Ring 1 Misc 8.89 0.64 72.36 0.56 \$ 11.69 33 O-Ring 1 Misc 8.89 0.64 28.94 0.23 \$ 2.00 34 End Cover 1 SS316 7.62 0.64 28.94 0.23 \$ 2.00 35 Screw 4 Misc	25	O-Ring	1	Misc	2.54					0.01	\$	0.27
27 Seal 1 Misc 5.08 3.81 0.01 \$ 0.57 28 Screw 4 Misc 0.02 \$ 0.48 29 Fitting 1 SS316 4.45 5.08 0.01 \$ 0.57 30 O-Ring 1 Misc 2.54 0.01 \$ 0.27 31 End Plate 1 SS316 15.24 3.81 0.64 72.36 0.56 \$ 11.69 32 Screw 8 Misc 0.01 \$ 0.57 33 O-Ring 1 Misc 8.89 0.04 \$ 0.96 33 O-Ring 1 Misc 8.89 0.01 \$ 0.57 34 End Cover 1 SS316 7.62 0.64 28.94 0.23 \$ 2.00 35 Screw 4 Misc 0.01 \$ 0.27 36 O-Ring 1 Misc 6.35 0.25 58.9	26	Outlet Manifold	1	SS316	4.45	8.89		0.64	35.17	0.27	\$	5.11
28 Screw 4 Misc 0.02 \$ 0.48 29 Fitting 1 SS316 4.45 5.08 0.10 \$ 1.07 30 O-Ring 1 Misc 2.54 0.01 \$ 0.27 31 End Plate 1 SS316 15.24 3.81 0.64 72.36 0.56 \$ 11.69 32 Screw 8 Misc - - 0.01 \$ 0.27 33 O-Ring 1 Misc 8.89 - 0.64 72.36 0.56 \$ 11.69 34 End Cover 1 SS316 7.62 0.64 - 28.94 0.23 \$ 2.00 35 Screw 4 Misc - - 0.01 \$ 0.27 36 O-Ring 1 Misc 6.35 - - 0.02 \$ 0.48 36 O-Ring 1 Steel 15.24 15.24 0.25 58.99 0.46 \$ 2.21	27	Seal	1	Misc		5.08	3.81			0.01	\$	0.57
29 Fitting 1 SS316 4.45 5.08 0 0.10 \$ 1.07 30 O-Ring 1 Misc 2.54 0.01 \$ 0.27 31 End Plate 1 SS316 15.24 3.81 0.64 72.36 0.56 \$ 11.69 32 Screw 8 Misc	28	Screw	4	Misc						0.02	\$	0.48
30 O-Ring 1 Misc 2.54 0.01 \$ 0.27 31 End Plate 1 SS316 15.24 3.81 0.64 72.36 0.56 \$ 11.69 32 Screw 8 Misc	29	Fitting	1	SS316	4.45	5.08				0.10	\$	1.07
31 End Plate 1 SS316 15.24 3.81 0.64 72.36 0.56 \$ 11.69 32 Screw 8 Misc 0.04 \$ 0.96 33 O-Ring 1 Misc 8.89 0.01 \$ 0.57 34 End Cover 1 SS316 7.62 0.64 28.94 0.23 \$ 2.00 35 Screw 4 Misc 0.02 \$ 0.48 36 O-Ring 1 Misc 6.35 0.25 58.99 0.46 \$ 2.21	30	O-Ring	1	Misc	2.54					0.01	\$	0.27
32 Screw 8 Misc 0.04 \$ 0.96 33 O-Ring 1 Misc 8.89 0.01 \$ 0.57 34 End Cover 1 SS316 7.62 0.64 28.94 0.23 \$ 2.00 35 Screw 4 Misc 0.04 \$ 0.27 \$ 0.48 36 O-Ring 1 Misc 6.35 0.25 58.99 0.46 \$ 2.21	31	End Plate	1	SS316	15.24	3.81		0.64	72.36	0.56	\$	11.69
33 O-Ring 1 Misc 8.89 0.01 \$ 0.57 34 End Cover 1 SS316 7.62 0.64 28.94 0.23 \$ 2.00 35 Screw 4 Misc	32	Screw	8	Misc						0.04	\$	0.96
34 End Cover 1 SS316 7.62 0.64 28.94 0.23 \$ 2.00 35 Screw 4 Misc 0.02 \$ 0.48 36 O-Ring 1 Misc 6.35 0.01 \$ 0.27 37 Support 1 Steel 15.24 15.24 0.25 58.99 0.46 \$ 2.21	33	O-Ring	1	Misc	8.89					0.01	\$	0.57
35 Screw 4 Misc 0.02 \$ 0.48 36 O-Ring 1 Misc 6.35 0.01 \$ 0.27 37 Support 1 Steel 15.24 15.24 0.25 58.99 0.46 \$ 2.21	34	End Cover	1	SS316	7.62	0.64			28.94	0.23	\$	2.00
36 O-Ring 1 Misc 6.35 0.01 \$ 0.27 37 Support 1 Steel 15.24 15.24 0.25 58.99 0.46 \$ 2.21	35	Screw	4	Misc						0.02	\$	0.48
37 Support 1 Steel 15.24 0.25 58.99 0.46 \$ 2.21	36	O-Ring	1	Misc	6.35					0.01	\$	0.27
	37	Support	1	Steel		15.24	15.24	0.25	58.99	0.46	\$	2.21

The rotor & vane assembly, blower housing, and DC motor are the top three cost drivers for the H_2 blower.

H ₂ Blower Manufactured Cost (\$)					
Component	OEM Cost ¹				
DC Motor	40				
Blower Housing	51				
Manifold	15				
Shaft Assembly	34	222			
Rotor & Vane Assembly	53				
Total:	193				

¹ Assumes 15% markup to the automotive OEM

We assumed that the material for the blower housing is stainless steel 316.

The enthalpy wheel manufacturing process was based on discussions with Emprise on their Humidicore[™] humidifier.

Courtesy: Emprise

The ceramic honeycomb material, Cordierite, is in mass production and is commonly used in automotive catalytic converters.

The motor is the largest contributor to the enthalpy wheel cost, followed by the cordierite core.

Enthalpy Wheel Humidifier Manufactured Cost ¹ (\$)							
Component	#	Material	Process				
DC motor with gear box	1	50.00	0.00				
Shaft	2	0.10	2.86				
Wheel shaft	2	0.12	3.56				
Screw	1	0.05	0.00				
Bearing	2	4.30	0.00				
End plate	2	10.79	1.80				
Spring plate	2	1.04	1.68				
Springs	26	1.30	0.00				
End seal plate	2	10.79	1.80				
Core	1	8.48	20.39				
Core pin	2	2.00	0.00				
Manifold (motor side)	1	2.24	6.20				
Bolts	12	0.60	0.00				
Main housing	1	6.73	1.46				
Bolts	4	0.80	0.00				
Base manifold	1	2.24	6.20				
Bolts	12	0.60	0.00				
Packaging	1	2.00	0.00				
Assembly & QC	-	_	9.95				
Total	1	160					

The Nafion tube bundle is the key component of the membrane humidifier and its manufacturing process is described below.

Material costs represent approximately 44% of the membrane humidifier cost projection.

Membrane Humidifier Manufactured Cost ¹ (\$)					
Component	#	Material	Process		
Right side housing	1	2.62	0.84		
Small O-ring	2	1.00	0.00		
Big O-ring	2	1.00	0.00		
C-clip	2	0.20	0.00		
Nafion tubes	960	14.19	22.42		
Nafion tube housing	1	1.30	0.88		
Nafion tube header	2	0.20 0.00			
Mesh filter	2	0.20	0.00		
Left side housing	1	2.85	0.85		
Assembly & packaging	-	2.05	6.93		
Subtotal	-	25.85	31.93		
Total - 58					

We developed a manufacturing process flow chart for the radiator based on Modine patents and in-house experience.

The radiator manufactured cost is projected to be \$56, with an overall OEM cost for the thermal management system of \$220 assuming a 15% markup.

Thermal Management System Cost (\$)							
Component Factory Cost OEM Cost ¹							
Radiator	56	65					
Radiator Fan	-	35					
Coolant Pump	-	120					
Total	-	220					

¹ Assumes 15% markup to the automotive OEM

The radiator fan and coolant pump are assumed to be purchased components, hence their price includes a markup.

The high-volume factory cost for the BOP components is projected to be \$1,350.

BOP Sub- system	Component	Technology Basis	Factory Cost ¹ , \$ (without supplier markup)	OEM Cost ¹ , \$ (with 15% supplier markup)
	Enthalpy wheel air-humidifier	Emprise	160	184
Water Management	Membrane H ₂ -humidifier	PermaPure	58	66
management	Other	-	10	10
	Automotive tube-fin radiator	Modine	56	65
Thermal	Radiator fan ²	-	35	35
Management	Coolant pump ³	-	120	120
	Other	-	5	5
Air	Compressor-Expander-Motor (CEM)	Honeywell	535	615
Management	Other	-	97	97
	H ₂ blower	Parker Hannifin	193	222
Fuel Management	H ₂ ejectors ⁴	-	40	40
	Other		41	41
TOTAL			1350	1500

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system.

² Assumes \$35/unit based on automotive radiator vendor catalog price, scaled for high volume production

³ Assumes \$120/unit, based on 2005 PEMFC Costing Report: E.J. Carlson et al., Cost Analysis of PEM Fuel Cell Systems for Transportation, Sep 30, 2005, NREL/SR-560-39104

⁴ Assumes \$20/unit, and 2 ejectors, based on 2005 PEMFC Costing Report: E.J. Carlson et al., Cost Analysis of PEM Fuel Cell Systems for Transportation, Sep 30, 2005, NREL/SR-560-39104

Both stack and BOP component costs are significantly reduced from the 2005 cost assessment.

PEMFC System Cost ¹ (\$/kW)	2005 OEM Cost	2007 Factory Cost ¹	2007 OEM Cost ^{1,2}
Stack	67	31	31
Water Management	8	2.8	3.3
Thermal Management	4	2.7	2.8
Air Management	14	7.9	8.9
Fuel Management	4	3.4	3.8
Miscellaneous	7	3.1	3.1
Assembly	4	5.5	5.5
Total	108	57	59

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

² Assumes 15% markup to the automotive OEM for BOP components

BOP component costs represent ~ 46% of the PEMFC system cost in 2007, as compared to ~ 38% in 2005.

Pt loading, power density, and Pt cost are the top three cost drivers of the PEMFC system cost¹.

2007	PEME	C Syste	om OEM C	ost ¹ (\$/kV	M)		#	Variables	Minimum	Maximum	Base	Comments
\$40 \$50 \$60 \$70 \$80 \$90			1	Pt Loading (mg/cm ²)	0.2	0.75	0.3	Minimum: DOE 2015 target ² ; Maximum: TIAX 2005 study ³				
Pt Loading		[+	1			2	Power Density (mW/cm ²)	350	1000	753	Minimum: industry feedback; Maximum: DOE 2015 target ² .
Power Density			_				3	Pt Cost (\$/tr.oz.)	450	2000	1100	Minimum: historical average ⁴ ; Maximum: current LME price ⁵
Pt Cost			-				4	OEM Markup	5%	20%	15%	Based on industry feedback
OEM Markup							5	Interest Rate	8%	20%	15%	Based on industry feedback
Interest Rate							6	Bipolar Plate Cost (\$/kW)	1.8	3.4	2.6	Based on component single variable sensitivity analysis
GDL Cost							7	GDL Cost (\$/kW)	1.7	2.2	1.9	Based on component single variable sensitivity analysis
Viton Cost			Ī				8	Viton Cost (\$/kg)	39	58	48	Based on industry feedback
Memebrane Cost			Ť				9	Membrane Cost (\$/m²)	10	50	16	Minimum: GM study ⁶ ; Maximum: DuPont projection ⁷

1. High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW). Assumes a % markup to automotive OEM for BOP components.

2. http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf

3. Carlson, E.J. et al., "Cost Analysis of PEM Fuel Cell Systems for Transportation", Sep 30, 2005, NREL/SR-560-39104

4. www.platinum.matthey.com

5. www.metalprices.com

6. Mathias, M., "Can available membranes and catalysts meet automotive polymer electrolyte fuel cell requirements?", Am. Chem. Soc. Preprints, Div. Fuel Chem., 49(2), 471, 2004

7. Curtin, D.E., "High volume, low cost manufacturing process for Nafion membranes", 2002 Fuel Cell Seminar, Palm Springs, (Nov 2002)

Among the BOP components, the CEM has the greatest impact on the PEMFC system cost¹.

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW). Assumes a % markup to automotive OEM for BOP components.

Monte Carlo analysis shows that the PEMFC system OEM cost ranges between 45/kW and 97/kW (± 2 σ) at a production volume of 500,000 units per year.

At low production volumes (100 units/year), the pilot plant scenario yields the lowest BOP cost of \$340/kW, while at high volumes (≥ 80,000 units/year), the full-scaled scenario yields the lowest BOP cost of \$26/kW.

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

The 2007 PEMFC stack and system costs are ~ 25-30% higher than the DOE 2010 cost targets.

PEMFC Sub-System	Factory Cost ¹ , \$/kW (without supplier markup)	OEM Cost ^{1,2} , \$/kW (with 15% supplier markup)	DOE 2010 Cost Target³, \$/kW	
Stack	3	31		
Balance of Plant	26	28	20	
Water management (enthalpy wheel, membrane humidifier)	2.8	3.3		
Thermal management (radiator, fan, pump)	2.7	2.8		
Air management (CEM, motor controller)	7.9	8.9	5	
Fuel management (H ₂ blower, H ₂ ejectors)	3.4	3.8		
Miscellaneous and assembly	8			
Total System	57	59	45	

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

² Assumes 15% markup to the automotive OEM for BOP components

³ FreedomCAR targets are \$20/kW for the stack and \$35/kW for the total system.

While our focus is on cost, we also independently evaluated power density and specific power for the stack and system.

PEMFC Sub-System	Volume ¹ (L)	Weight (kg)	DOE 2010 Target
Stack	40	47	
Power density ² (W _e /L)	2,0	00	2,000
Specific power ² (W _e /kg)	1,7	02	2,000
Balance of Plant	78	63	
Water management (enthalpy wheel, membrane humidifier)	14	10	
Thermal management (radiator, fan, pump)	25	5	
Air management (CEM, motor controller)	15	20	
Fuel management (H_2 blower, H_2 ejectors)	5	7	
Miscellaneous and assembly	19	21	
Total System	118	110	
Power density ² (W _e /L)	678		650
Specific power ² (W _e /kg)	72	27	650

² Based on stack net power output of 80 kW, and not on the gross power output of 86.5 kW

Future Work

We will obtain industry feedback on our input assumptions and cost results and write a comprehensive, peer-reviewable report covering our 2007 PEMFC cost analysis.

- Interview developers and stakeholders for feedback on performance and cost assumptions and overall results
 - 2006 Stack economies-of-scale
 - 2007 System high-volume cost
 - 2007 BOP economies-of-scale
- Incorporate feedback into stack and BOP bottom-up cost models.
- Prepare a comprehensive report on the 2007 PEMFC cost analysis (high-volume, bottom-up stack and BOP cost)

Thank You

We coordinated with DOE, ANL, developers, and stakeholders so far this year, with additional meetings to follow.

Audience/ Reviewer	Date	Location
DOE Merit Review	May 06	Washington DC
Kickoff Mtg. with DOE	May 06	Washington DC
Coordination Mtg. with DOE and ANL	Oct 06	Washington DC
Fuel Cell Tech Team Mtg.	Aug 06	Detroit MI
System Specifications Review Meeting with DOE and ANL	Feb 07	Telecon
Manufacturing Process Review Mtg. with 3M	Mar 07	Telecon
Fuel Cell Tech Team Mtg.	Apr 07	Detroit MI
National Academy of Science Review	Apr 07	Washington DC
DOE Merit Review	May 07	Washington DC
Several Work-in-Progress Mtgs. with DOE and ANL	Jun – Sep 07	Telecon
Final Presentation to Dr. JoAnn Milliken	Nov 07	Washington, DC
Fuel Cell Tech Team Mtg.	May 08	Detroit MI

The 2006 EOS analysis is based on the 2005 stack specifications, with minor changes to the component material assumptions and processes.

Parameters	Units	2005 stack / 2006 EOS
Cell voltage @ rated power	V	0.65
Power density @ 0.65V	mW/cm ²	600
Total Pt Loading	mg/cm ²	0.75
Pt cost	\$/g (\$/tr.oz.)	29 (900)
Fuel cell net power	kW _e	80
Fuel cell gross power	kW _e	90
Stack voltage @ rated power	V	300 V @ 266 A
Number of stacks per system		2
Number of cells per stack		231
System pressure @ rated power	atm	2.5
Operating temperature	°C	80

Component	Parameter	2006 EOS Assumptions		
	Material	Sulfonated fluoro-polymer		
Mombrano	Supported	No		
Membrane	Process	Cast dispersion		
	Thickness	50 µm		
	Catalyst	Pt		
Electrodes (Cathode &	Support	Carbon black		
Anode)	Process	Screen printing / gravure coating		
Gas Diffusion	Material	Non-woven carbon paper		
Layer (GDL)	Process	Hydrophobic treatment		
Pipolar Plata	Material	Molded graphite		
Dipolar Plate	Process	Compression molding		

The 2007 stack is different from the 2005 stack in that it assumes an NSTFC¹-based MEA, a 30 μ m 3M-like membrane, Pt loading=0.3 mg/cm² and power density = 753 mW/cm² @ 0.68 V/cell.

¹ Nano-Structured Thin Film Catalyst on organic whisker support

At low volumes (~100 systems/year), the pilot plant yields the lowest stack cost of ~ $$610/kW^1$, while at high volumes ($\geq 80,000$ systems/year), the full-scaled scenario yields the lowest stack cost of ~ $$61/kW^1$.

The references used to determine the overall design and major manufacturing processes for the CEM are tabulated below.

Component	References		#	Selected	Material	Major Manufacturing
Overall System	Honeywell, DOE program review, progress report & annual report, 2005, 2004, 2003, 2000	_	1	Components Turbine Housing	AI	Processes Cold chamber die casting; Turning; Drilling
Electrical Motor	Honeywell, DOE program review, progress report & annual report		2	Motor Housing	AI	Cold chamber die casting; Turning; Drilling
	2004; US patent 5,605,045; Honeywell, DOE program review,		3	Compressor Housing	AI	Cold chamber die casting; Turning; Drilling
Power Electronics	progress report & annual report, 2005; Caterpillar, DOE Contract DE- SC05-00OR-99OR22734		4	Motor connecting shaft	Steel	Turning; Heat treatment; Grinding
Unison Ring	US patent 6,269,642; Garrett/Honeywell_DE-EC05-		5	NdFeB Magnet	NdFeB	Mixing; Molding; Sintering (purchased)
erneert i mig	000R22809;		6	Turbine Wheel	AI	Investment casing; HIP
Journal Bearings	US patent, 2006/0153704; Honeywell 2005 fuel cell seminar;		7	Compressor Impeller	AI	Investment casting; HIP
			8	Thrust Bearing Runner	Steel	Turning; Heat treatment; Grinding

The overall compressor/expander design is referenced from Honeywell DOE project presentations¹ and US patent 5,605,045.

The major sub-assemblies (e.g., variable nozzle vanes, motor, air bearing) are referenced from US patents, other public materials, and TIAX experience.

The turbine variable nozzle vanes and control assembly are referenced from US patent 6,269,642.

The CEM motor stator and rotor assembly are referenced from US patent 5,605,045.

The journal air bearing assemblies are referenced from Honeywell DOE project presentations¹ and US patent 2006/0153704.

¹ Mark Gee, "Turbocompressor for PEM Fuel Cells," Progress Report, DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program, 2002.

The major manufacturing processes for selected components of the H₂ blower are tabulated below.

#	Selected Components	Material	Major Manufacturing Processes
1	Motor Side End Plate	SS316	Automatic sand casting; turning; drilling
2	Blower Housing	SS316	Automatic sand casting; turning; drilling
3	Inlet Manifold	SS316	Powder metallurgy
4	Outlet Manifold	SS316	Powder metallurgy
5	End Plate	SS316	Automatic sand casting; turning; drilling
6	Blower Shaft	SS316	Turning; Milling; Heat treatment; Grinding
7	Rotor	AI	Casting; Turing; Milling; Broaching
8	Vane	SS316	Hot forging; Drilling; Reaming

Backup Slides H₂ Blower Patents

The rotor and single vane structure in the Parker Hannifin Model 55 Univane H₂ blower are referenced from US patent 5,374,172.

FIG.3

FIG. 5C FIG. 5A FIG. 5B

FIG_°6

We performed single and multi- variable sensitivity analyses to examine the impact of major stack and BOP parameters on PEMFC system cost.

- Single variable stack sensitivity analysis
 - Varied one parameter at a time, holding all others constant
 - Varied overall manufacturing assumptions, economic assumptions, key stack performance parameters, and direct material cost, capital expenses and process cycle time for individual stack components
 - Assumed stack rated power, operating pressure, temperature, humidity requirements and cell voltage remained invariant
- Single variable BOP sensitivity analysis
 - Varied one parameter at a time, holding all others constant
 - Varied overall manufacturing assumptions, economic assumptions, and direct material cost, capital expenses and process cycle time for individual BOP components
 - Assumed stack rated power, operating pressure, temperature, humidity requirements and cell voltage remained invariant
- Multi-variable (Monte Carlo) system sensitivity analysis
 - Varied all stack and BOP parameters simultaneously, using triangular PDF
 - Performed Monte Carlo analysis on individual stack and BOP components, the results of which were then fed into a system-wide Monte Carlo analysis

Stack performance assumptions were provided by ANL based on their modeling of a 3M-like stack.

- Improvement over 2005 assumptions:
 - 60% reduction in Pt loading with an increase in power density
 - 40% thinner and less expensive membrane on an area basis
- Platinum (Pt) loading and power density are critical parameters that influence stack cost
- Lower Pt loading is attributed to novel catalyst and support structure (i.e., nanostructured thin film on organic whisker support)
- We reviewed the performance assumptions with 3M, ANL and the FC Tech Team, but we did not assess other developers' state-of-the-art performance attributes

Performance Ass	2005 ¹	2007 ^{2,3}	
Net power	kW _e	80	80
Gross power	kW _e	89.5	86.4
Power density	mW/cm ²	600	753
Cell voltage	V	0.65	0.68
Pt loading (total)	mg/cm ²	0.75	0.30
Membrane thickness	μ m	50	30
Stack Temperature	°C	80	90
Pressure (rated power)	atm	2.5	2.5
Stack eff. (rated power)	% LHV	52	54

¹ E.J. Carlson et al., Cost Analysis of PEM Fuel Cell Systems for Transportation, Sep 30, 2005, NREL/SR-560-39104

- ² R.K. Ahluwalia and X. Wang, Reference Fuel Cell System Configurations for 2007: Interim Results, ANL, Feb. 6, 2007
- ³ R.K. Ahluwalia, X. Wang and R. Kumar, Fuel Cell Systems Analysis, DOE Hydrogen Program Review, May 15-18, 2007

Key assumptions in 2007 represent stack performance breakthroughs, in particular high power density with significant Pt reduction.

We developed material cost assumptions and additional stack specifications consistent with the new performance assumptions.

TIAX Assumptions	Units	2005 ¹	2007
Production volume	units/yr	500,000	500,000
Pt cost	\$/g (\$/tr.oz.)	29.0 (900)	35.4 (1100)
Pt conversion cost	% Pt cost	20%	10%
Number of stacks	#	2	2
Number of cells per stack	#	231	221
Active cell area:Total cell area	%	85%	85%
Active area per cell	cm ²	323	269
Cell pitch	cells/inch (cells/cm)	9.55 (3.76)	10.00 (3.85)
Stack voltage (rated power)	V	300	300

¹ E.J. Carlson et al., Cost Analysis of PEM Fuel Cell Systems for Transportation, Sep 30, 2005, NREL/SR-560-39104

Most 2007 assumptions are consistent with our 2005 cost assessment, except an increase in Pt cost to reflect current (high) prices.

The electrodes represent approximately 57% of the \$31/kW fuel cell stack cost in 2007.

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

BOS = Balance-of-Stack

Stack costs on a per kW basis are 54% lower than the 2005 costs primarily due to higher power density with decreased Pt loading.

Manufactured Cost ¹ , \$/kW	2005	2007	% change²	2010 DOE Target	Cost drivers / Comments
Membrane	4	2	-46%		Power density increased from 600
Electrodes	52	18	-66%	10	mW/cm ² to 753 mW/cm ² Pt loading decreased from 0.75 mg/cm ² to 0.3 mg/cm ² Woven carbon fiber cost decreased from \$30/kg to \$20/kg Changed window frame from nitrile rubber (\$5/lb) to Viton® (\$20/lb)
GDL	3	2	-42%		
Seal	1	2	73%		
Bipolar plates	3	3	-17%	5	
BOS	1	1	-13%		Includes stack manifold, bolts, end plates, current collector
Final Assembly	2	3	75%		2007 cost includes QC but not conditioning, while 2005 cost includes neither
Total ²	67	31	- 54%	25	

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW). Estimates are not accurate to the number of significant figures shown.

² Results may not appear to calculate due to rounding of the 2005 and 2007 cost results.

