

Analyses of Hydrogen Storage Materials and OnBoard Systems

Hydrogen Delivery Analysis Meeting

May 8, 2007

Stephen Lasher

Kurtis McKenney Yong Yang Bob Rancatore Stefan Unnasch Matt Hooks

TIAX LLC 15 Acorn Park

Cambridge, MA 02140-2390

Tel. 617- 498-6108 Fax 617-498-7054 www.TIAXLLC.com Reference: D0268

© 2007 TIAX LLC

This presentation does not contain any proprietary or confidential information

Timeline

- ◆Start date: June 2004
- ◆End date: Sept 2009
- ◆41% Complete

Budget

- ◆Total project funding
 - ➤ DOE share = \$1.5M
 - ➤ No cost share
- ◆FY06 = \$275k
- ◆FY07 = \$300k (plan)

(TIAX

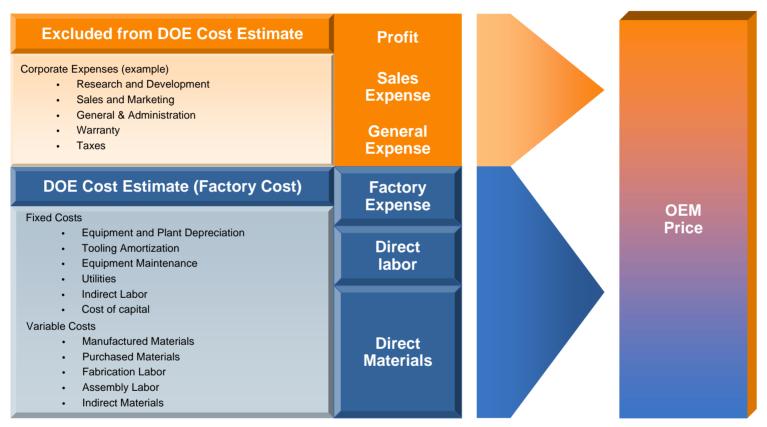
Barriers

- Barriers addressed
 - ➤ B. Cost
 - C. Efficiency
 - K. System Life Cycle Assessments

Collaboration

- Argonne and other National Labs
- Centers of Excellence and other developers
- Tech Teams and other stakeholders

Objectives

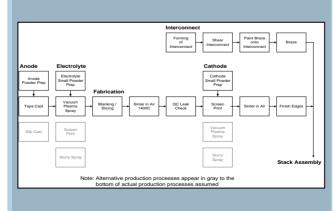

This project provides an independent cost assessment of the hydrogen storage technologies being developed for the DOE Grand Challenge.

Objective	Description	Technology Focus							
Objective	Description	2005	2006	2007					
Overall	Help guide DOE and developers toward promising R&D and commercialization pathways by evaluating the status of the various on-board hydrogen storage technologies on a consistent basis								
On-Board Assessment	Evaluate or develop system- level designs to estimate weight, volume, and bottom- up factory cost for the on- board storage system	vel designs to estimate eight, volume, and bottom- Alanate		 Compressed H₂ (update) Liquid HC* 					
On-Board Cost Estimate	Estimate Bill-of-Material factory costs for the on-board storage system		Cryo- compressed	• Liquid H ₂ • AC					
Off-Board Assessment	Evaluate or develop designs and cost inputs to estimate refueling cost and Well-to-Tank energy use and GHG emissions for the fuel chain		 Liquid H₂ (includes Cryo-compressed) Compressed H₂ 	• SBH • Liquid HC* • AC* • Sodium Alanate*					

^{*} Results have not been generated to date. Note that previously analyzed systems will continually be updated based on feedback and new information.

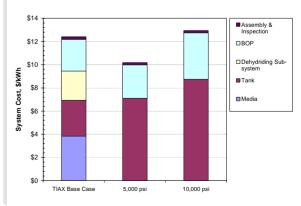
We estimate an OEM factory cost, excluding OEM corporate charges for profit, sales and G&A expenses.

- We assume a vertically integrated process for the manufacture of the tank, so no mark-up is included on those components
- Raw materials and BOP components are assumed to be purchased by the OEM and therefore include supplier mark-ups

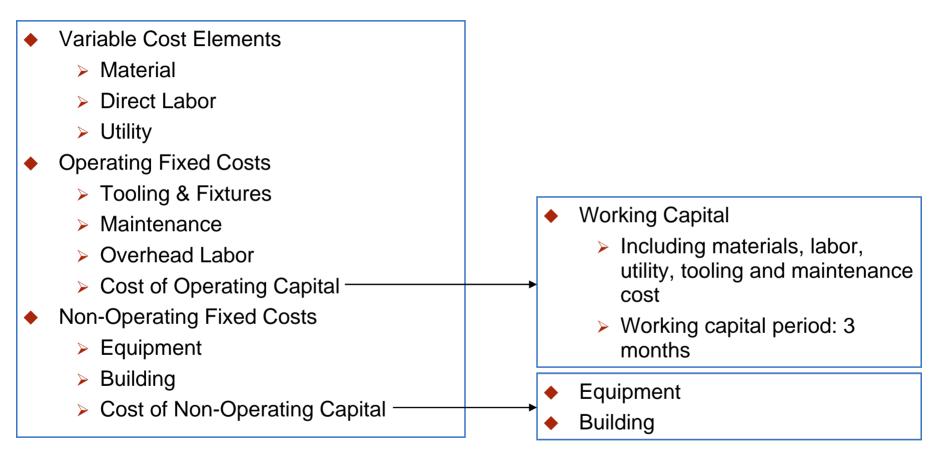

The on-board cost and performance assessments are based on detailed technology assessment and bottom-up cost modeling.

Technology Assessment

- Perform Literature Search
- Outline Assumptions
- Develop System
 Requirements and
 Design Assumptions
- Obtain Developer Input


Cost Model and Estimates

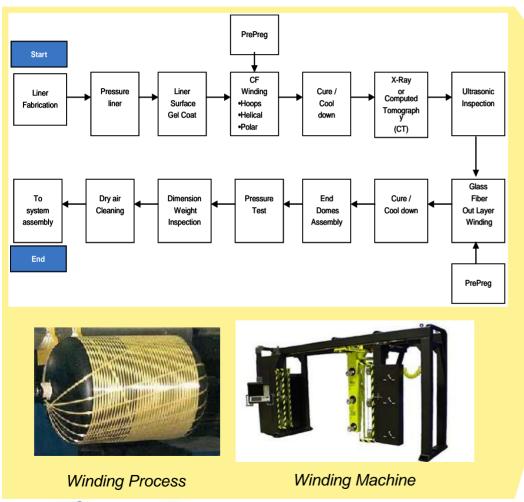
- Develop BOM
- Specify Manufacturing Processes and Equipment
- Determine Material and Processing Costs
- Develop Bulk Cost Assumptions

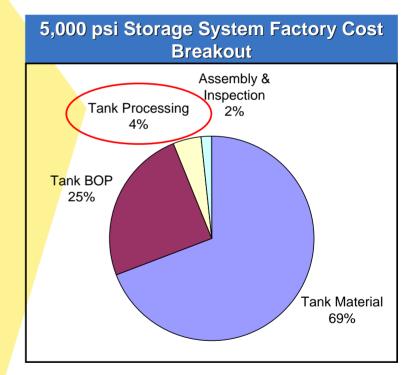


Overall Model Refinement

- Obtain Developer and Industry Feedback
- Revise Assumptions and Model Inputs
- Perform Sensitivity
 Analyses ("Best" and "Worst" cases)

The cost of capital equipment, buildings, labor, utilities, etc. are included in our processing cost assessments.

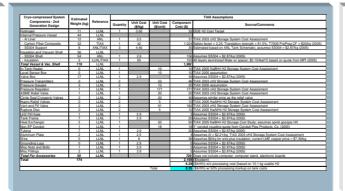



We assume 100% debt financed with an annual interest rate of 15%, 10-year equipment life, and 25-year building life.

Processing and assembly/inspection costs are derived from an understanding of the detailed process steps and their requirements.

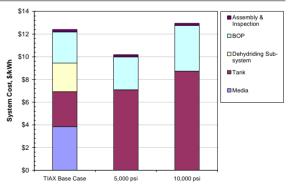
Example: Processing Steps for Compressed Tanks

The on-board cost <u>estimates</u> are simply based on Bill of Material (BOM) costs plus an assumed processing cost.


Review of Designs/ Component Specs

- Perform Literature Search
- Understand System Requirements and Design Assumptions
- Obtain Developer Input

Pressure regulator Pressure regulator Pressure transmitter Shut off valve Pressure transmitter Pressure relief valve Rupture disc

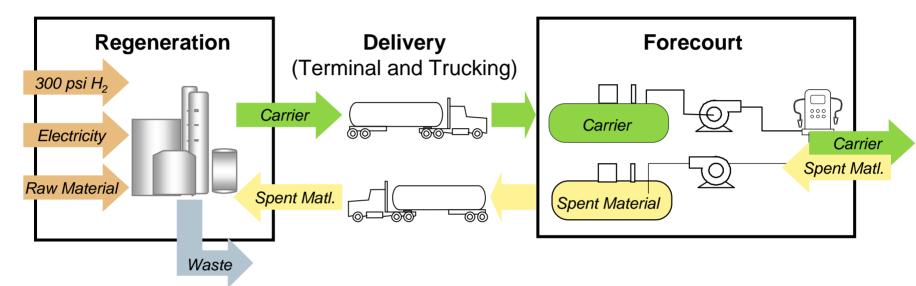

BOM and Cost Estimates

- Develop BOM
- Determine Material and Component Costs
- Develop Bulk Cost Assumptions

BOM and Estimate Refinement

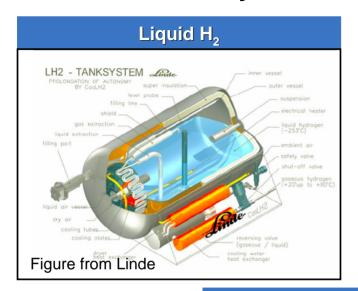
- Obtain Developer and Industry Feedback
- Revise BOM Assumptions
- Perform Sensitivity Analyses

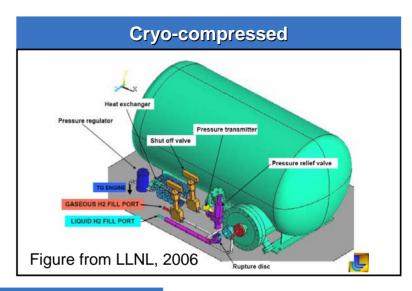
Processing and assembly/inspection costs are <u>not</u> determined for the cost <u>estimates</u>, so we must rely on developer feedback.

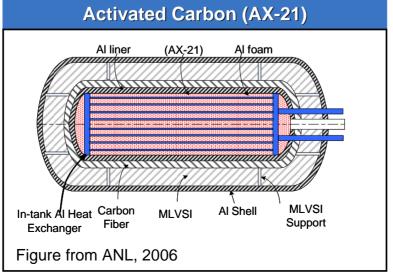

The off-board assessment makes use of existing models to calculate cost and performance for each technology on a consistent basis.

Conceptual Design Process Simulation GREET Model ♦ WTT energy use System layout and Energy requirements equipment requirements WTT GHG Equipment size/ specs **Site Plans Capital Cost Estimates H2A Model** Equivalent hydrogen Safety equipment, site High and low volume prep, land costs equipment costs selling price

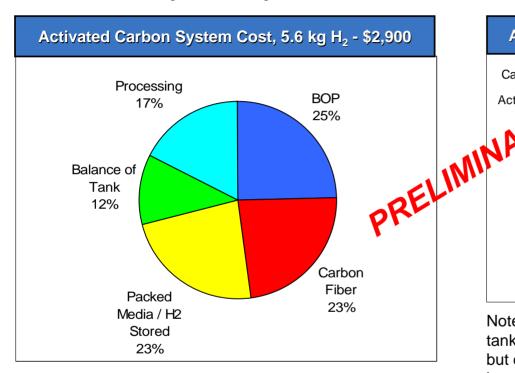
Steps

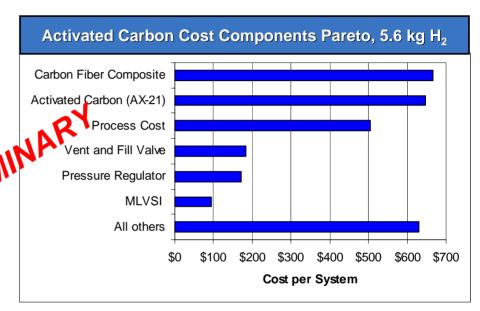

The off-board assessment for Sodium Borohydride (SBH) requires evaluation of regeneration, delivery and forecourt technologies.




- H₂ is supplied "over-the-fence"
- May include electrolysis
- ◆ Today's processes may not recycle all spent material
- Transportation of the carrier and spent material in same truck
- Terminal storage may be required at the regeneration site
- May include carrier and spent material storage and dispensing (loading and off-loading)
- Or compressed hydrogen dispensing

Fundamental system requirements and basic schematics were acquired from literature, industry and National Labs.


For each cost estimate, we relied on system-level design assumptions from literature and discussions with National Labs and developers.

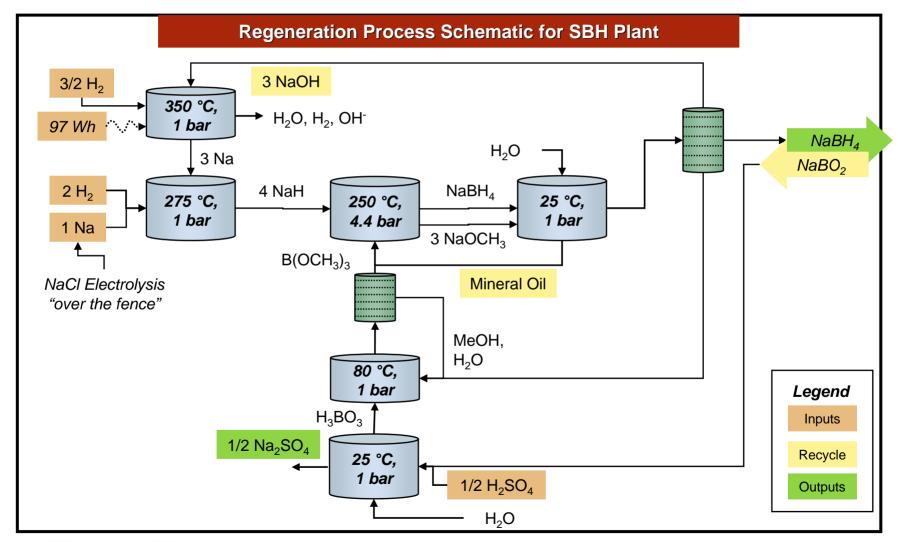

Sub- System	Parts List	Specifications	Basis/Comments				
	Hydrogen	5.6 kg usable	ANL drive-cycle modeling				
Media	Activated Carbon (AX-21)	42 kg usable $\rm H_2/\ m^3$, 300 kg/m³ bulk dens, 2800 m²/g, 0.1 W/m-K	ANL AC modeling for 200 bar, 100 K, and 50 K temp. swing				
	Al foam	2 wt% Al-2024 foam, 2.4 W/m-K					
	In-tank LN ₂ Heat Exchanger	Al-2024, 9.5 mm OD, 1.2 mm thick tubes, 0.9 mm thick tube sheets, 107 tubes	ANL AC tank design; similar in style to NaAlH $_4$ in–tank heat exchanger, but functionally used to cool the tank with LN $_2$ during refueling				
	SS Filters	Sintered SS	Not mentioned by ANL, assumed necessary (similar to NaAlH ₄)				
	Al liner	2 mm Al alloy	ANL AC tank design				
Tank	CF Composite	T700S, 60% fiber by vol, 1600 kg/m³, 2.25 SF	TIAX assumptions based on previous high-pressure tank designs				
	CF Composite Layer 7 mm		TIAX netting analysis for 175L, 200 bar, 82% translation strength				
	MLVSI 10 ⁻⁵ torr vacuum, 1 W heat transfer rate through insulation (~5 W total)		ANL AC tank design (same as cryo-compressed tank)				
	MLVSI Layers 35		Preliminary TIAX estimate based on cryo-compressed tank, adjusted for new tank surface area and temperatures				
	MLVSI support	Composite material	Low thermal conductivity material required				
	Al outer shell	3 mm Al alloy	ANL AC tank design				
ВОР	Regulators, valves, fill port, etc	200 bar pressure	Assumed same as for cryo-compressed tank, although pressu 40% lower				

^{*} Part lists for other systems shown in backup slides

From BOM cost estimates, we calculated total system costs and identified key sub-systems and cost drivers.

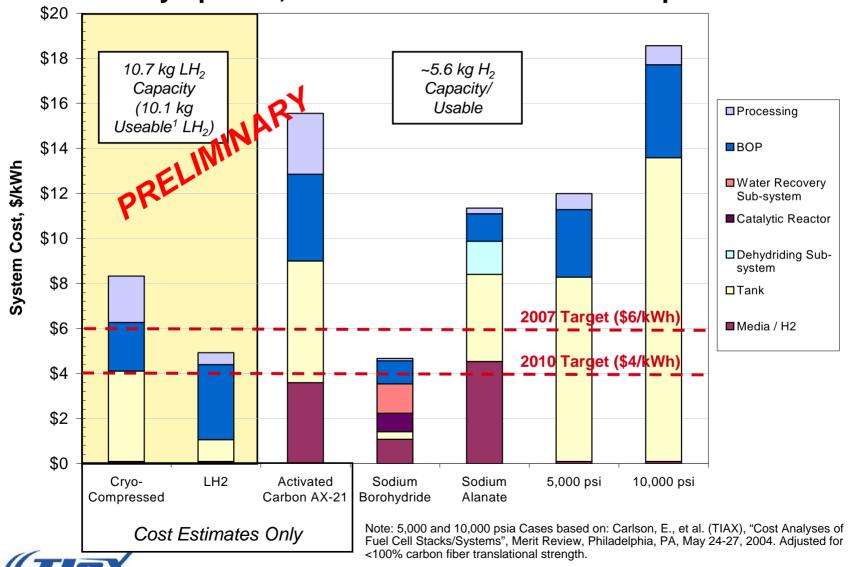
Note: It is not clear what processing cost to use for carbon fiber tanks with MLVSI (e.g., cryo-compressed and activated carbon) but developers comments indicate that processing costs could be somewhere between 10-100% of the tank material costs. We chose 50% for now, but we will be refining this based on further developer discussions.

Critical cost drivers such as carbon fiber, activated carbon, and processing cost will be evaluated in more detail for the AC system.



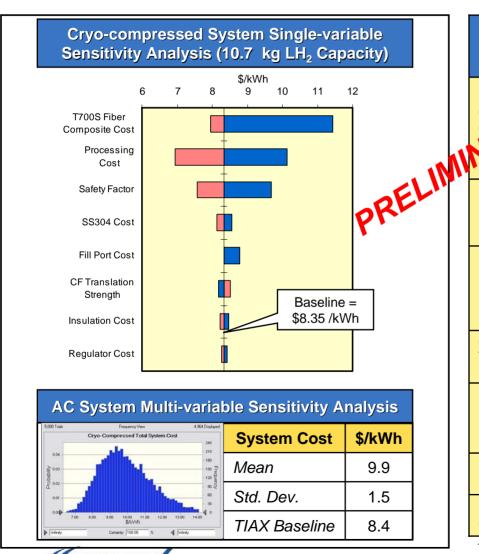
The H2A Carrier model was used to allow for direct cost comparison to compressed and liquid H₂ fuel options.

- Most financial assumptions are maintained from the original H2A Model
- New calculation tabs were added as part of the DOE Delivery Project
 - Regeneration calculates material regeneration costs based on capital and operating costs of a central plant
 - Trucking calculates trucking costs for all novel carriers
 - Storage Terminal calculates required storage for fresh and spent materials
 - Forecourt calculates forecourt station costs for fueling vehicles with novel carrier storage
- Calculation tabs were populated with inputs based on industry and developer feedback
 - TIAX made initial estimates consistent with H2A methodology
 - Model and estimates were reviewed with developers
 - Model inputs and results were updated

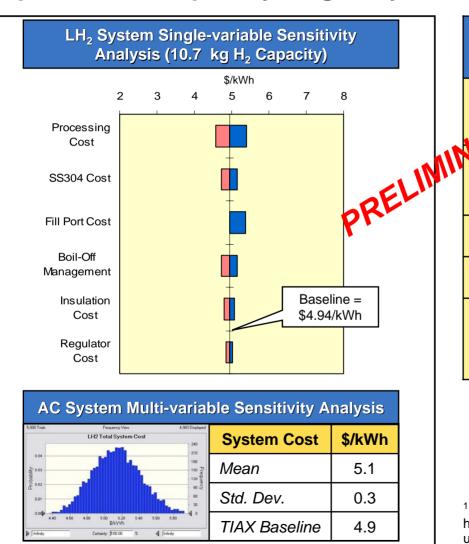


We evaluated a regeneration process for SBH that reflects existing technology but is not currently being used at the industrial-scale.




The cryo-compressed and LH₂ systems are projected to be cheaper than pressurized-only options; AC will have similar costs to pressurized-only.

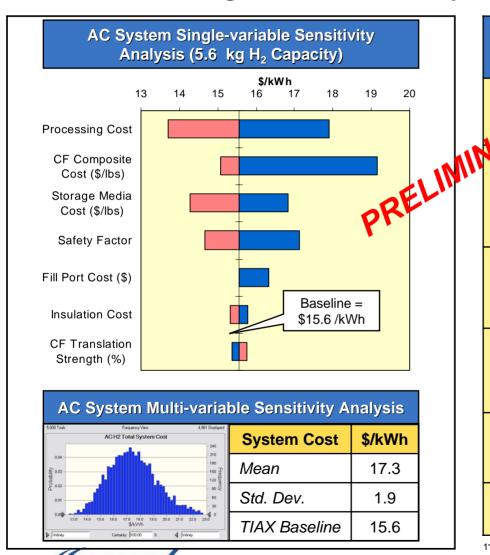
However, the cryo-compressed system is estimated to be just 17% cheaper than a 5,000 psi tank system when normalized for 5.6 kg H₂.


Single- and multi-variable sensitivity analyses are used to estimate the dependence and sensitivity of cost on/to the critical cost drivers.

Key	Cryo-Compressed Key Variable Assumptions						
Sensitivity Parameters	Base- line	Min	Max	Comments/Source			
CF Composite Cost (\$/lb)	14.6	12.8	25.5	 Includes Epoxy (1.27x CF) Baseline from TIAX (2003) inflated to 2005\$ Min and max based on developer input 			
Processing Markup (%) ²	50%	10%	100%	 Min equivalent to compressed-only tanks; max based on cryo-tank developer comments 			
Safety Factor	2.25	1.80	3.00	 Baseline assumes a typical industry factor Min and max based on Quantum and Dynatek, respectively 			
CF Translation Strength (%)	81.5%	78%	85%	 Estimates reported by Quantum for 5,000 psi tanks 			
Fill Port Cost (\$)	90	90	170	 ◆ Industry interviews (2003), inflated to 2005\$ ◆ Need to develop bottom up cost for min 			
SS304 Cost (\$/kg)	2.7	2.1	3.1	◆ Baseline from TIAX (2003) inflated to 2005\$			
Regulator Cost (\$)	170	140	200	◆ Industry interviews (2003), inflated to 2005\$			

¹The processing cost markup is applied to the tank cost.

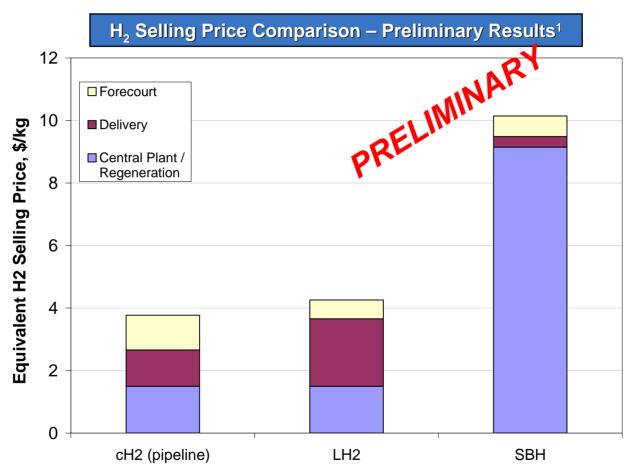
The processing cost markup uncertainty has the most significant impact on the liquid hydrogen system cost.


Key	Liquid H ₂ Storage Key Variable Assumptions					
Sensitivity Parameters	Base- line	Min	Max	Comments		
Processing Markup (%) ²	50%	10%	100%	 Min equivalent to compressed-only tanks; max based on cryo-tank developer comments 		
Fill Port Cost (\$)	90	90	170	 ◆ Industry interviews (2003), inflated to 2005\$ ◆ Need to develop bottom up cost for min 		
SS304 Cost (\$/kg)	2.7	2.1	3.1	◆ Baseline from TIAX (2003) inflated to 2005\$		
Regulator Cost (\$)	170	140	200	◆ Industry interviews (2003), inflated to 2005\$		
Boil-off Management	320	240	400	◆ TIAX estimate; need to obtain more specific material types/weights from Linde or BMW for bottom up analysis		

¹ Costs per kWh are based on a projected 336 kWh (10.1 kg) "usable" hydrogen assuming 94% drive cycle utilization (ANL). A drive cycle utilization calculation should be performed specifically for the LH₂ system.

² The processing cost markup is applied to the tank cost.

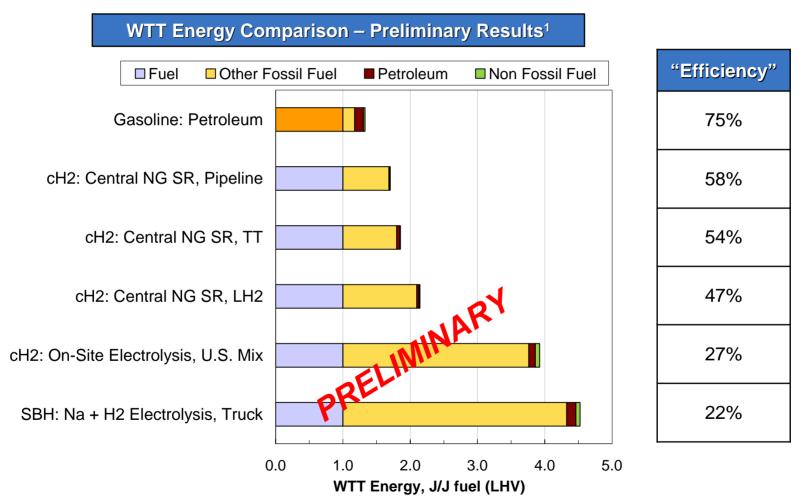
The AC storage media, carbon fiber and processing cost assumptions show the most significant variability in overall cost.



Key	AC H ₂ Storage Key Variable Assumptions						
Sensitivity Parameters	Base- line	Min	Max	Comments			
Processing Markop (%) ¹	50%	10%	100%	 Min equivalent to compressed-only tanks; max based on cryo-tank developer comments 			
CF Composite Cost (\$/lb)	14.6	12.8	25.5	 ◆ Includes Epoxy (1.27x CF) ◆ Baseline from TIAX (2003) inflated to 2005\$ ◆ Min and max based on developer input 			
AC Media Cost (\$/lbs)	7	4	10	◆ Cost estimate from Kansai Coke and Chemical Co DTI (1996), projected for high volume and 2005\$			
Safety Factor	2.25	1.80	3.0	 Baseline assumes a typical industry factor Min and max based on Quantum and Dynatek, respectively 			
Fill Port Cost (\$)	90	90	170	 ◆ Industry interviews (2003), inflated to 2005\$ ◆ Need to develop bottom up cost for min 			
CF Translation Strength (%)	81.5%	78%	85%	◆ Estimates reported by Quantum for 5,000 psi tanks			

¹The processing cost markup is applied to the tank cost.

19


Preliminary results indicate that the equivalent H₂ price for SBH will be ~2.5 times more expensive than liquid or compressed hydrogen.

¹ These results are based on natural gas steam reforming as the sources for the hydrogen. Production and delivery efficiency (LHV) assumptions include: steam reformer = 74%, pipeline power = 3 kWh/kg, liquefier power = 8.6 kWh/kg. Cost assumptions include: 100 km truck delivery from a central plant to the forecourt designed for 1500 kg/day H₂, SBH plant = 470 TPD (100 TPD H₂ equivalent), Hydrogen plant = 300 TPD.

WTT primary energy inputs for SBH based on "current technology" are even more energy intensive than electrolysis pathways.

¹ These results are based on natural gas steam reforming or water electrolysis with grid power as the sources for the hydrogen. Production and delivery efficiency (LHV) assumptions include: steam reformer = 74%, electrolyzer = 70%, pipeline power = 3 kWh/kg, liquefier power = 8.6 kWh/kg.

Future Work FY07

We are in the process of finalizing the AC, cryo-compressed, and LH₂ on-board results and conducting the off-board assessment.

- Finalize results for the on-board cryo-compressed, liquid H₂ and AC systems, including:
 - Solicit additional developer feedback, especially regarding processing costs
 - Develop more detailed cost estimates for key cost variables
 - Evaluate and compare system weight breakout to ANL and developers estimates
- Finalize results for LH₂ and SBH and start off-board analyses for liquid HC, alanate and AC systems
 - Determine WTT energy use and GHG emissions for each fuel chain
 - Estimate "refueling cost" and storage system "ownership cost"
 - Consider vehicle integration impacts
- Continue to work with DOE, H2A, other analysis projects, developers,
 National Labs, and Tech Teams to revise and improve past system models

Summary

We have completed certain aspects of on-board and off-board evaluations for eight hydrogen storage technologies.

Analysis To Date		cH ₂	Alanate	SBH	Cryo- comp	LH ₂	AC	MgH ₂	Liquid HC
On-	Review developer estimates		√	√	√	√	√		WIP
	Develop process flow diagrams and system energy balances	√	V	√					
Board	Independent performance assessment (wt, vol)	√	7	1					
	Independent cost assessment	√	1	√	√*	√*	√*		
	Review developer estimates	1		√	V			√	WIP
Off-	Develop process flow diagrams and system energy balances	√		√	√			√	
Board	Independent performance assessment (energy, GHG)	√		√*	√*				
	Independent cost assessment	√		√*	√ *				
	WTT analysis tool ¹	√							
Overall	Solicit input on TIAX analysis	√	√	WIP	WIP	WIP			
	Interim report	WIP	WIP						

^{*} Preliminary results under review.

= Not part of current SOW
WIP = Work in progress

¹ Working with ANL and H2A participants on separate WTT analysis tools.

Thenk You

Questionsp

