		Analyses of Hydrogen Storage Materials and On- Board Systems		
	Project ID # ST20	DOE Merit Re May 17, 20		
		Stephen Lasher lasher.stephen@tiaxllc.com	TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 Tel. 617- 498-6108 Fax 617-498-7054 www.TIAXLLC.com Reference: D0268	

This presentation does not contain any proprietary or confidential information

Overview

Timeline

Start date: June 2004

End date: Sept 2009

28% Complete

Budget

- Total project funding
 - ► DOE share = \$1.5M
 - No cost share
- ◆FY05 = \$200k
- ♦FY06 = \$275k

Barriers

- Barriers addressed
 - ≻A. Cost
 - ≻C. Efficiency
 - G. Life Cycle and Efficiency Analyses

Partners

- Team: GTI, Prof. Robert
 Crabtree (Yale), Prof. Daniel
 Resasco (U. of Oklahoma)
- Feedback: National Labs, Developers, Stakeholders

Objectives

This project provides an independent cost assessment of the hydrogen storage technologies being developed for the DOE Grand Challenge.

Objective	Description	Technology Focus			
Description		2005	2006	2007	
On-Board Assessment	Develop system-level designs and estimate the cost, weight, and volume for the on-board storage system	 Sodium Alanate 	 Sodium Borohydride Activated Carbon* 	HC CarrierTBD	
Off-Board Assessment	Evaluate designs and cost inputs and estimate the refueling cost and Well-to-Tank energy use and GHG emissions for the fuel chain	-	 Sodium Borohydride Magnesium Hydride* Sodium Alanate 	• HC Carrier • TBD	
Overall	Help guide DOE and developers toward promising R&D and commercialization pathways by evaluating the status of the various on-board hydrogen storage technologies on a consistent basis	• Sodium Alanate	• Sodium Borohydride	HC CarrierTBD	

* Review of developer inputs only. Did not perform a detailed, independent assessment.

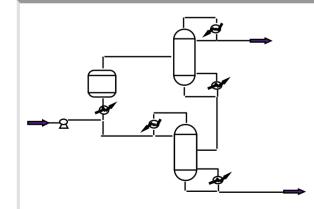
A consistent, Well-to-Wheels (WTW) assessment requires an evaluation of both the on-board and off-board performance and cost.

Approach	Material/Component Performance	System-Level Performance	Cost
On-Board Assessment	 Material wt % P, T requirements Thermo, kinetics 	 Storage system weight and volume Vehicle efficiency (e.g. mi/kg H₂) Powertrain weight Thermal, power requirements 	 Storage system factory cost: Material Subsystems Balance of plant Process
Off-Board Assessment	 Regeneration efficiency Material wt % Thermo, kinetics 	 Reprocessing/ production, delivery & forecourt requirements WTT energy and GHG emissions (MJ, g/kg H₂) 	 Capital & operating costs Equivalent H₂ selling price (\$/kg)
Overall	NA	WTW energy and GHG emissions (MJ, g/mile)	 Ownership cost (\$/mile)

Approach On-Board Assessment

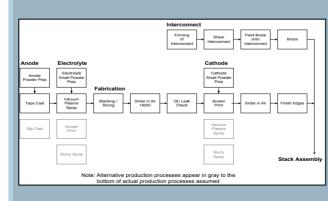
Our on-board cost and performance estimates are based on detailed technology assessment and bottom-up cost modeling.

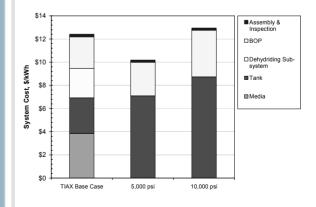
Performance/ Tech Assessment


- Literature Search
- Outline Assumptions
- System Design and Configurations
- Process Models
- Developer Input

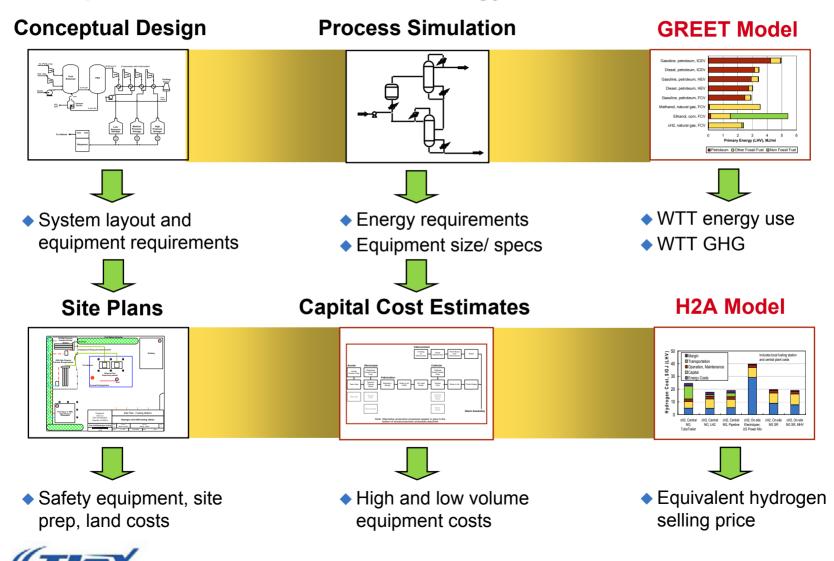
Cost Model and Estimates

- Document BOM
- Specify Manufacturing Processes and Equipment
- Determine Raw Material Costs


Overall Model Refinement

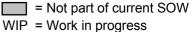

- Developer and Industry Feedback
- Revise Assumptions and Model Inputs
- Sensitivity Analyses

BOM = Bill of Materials



Approach Off-Board Assessment

The off-board assessment makes use of existing models to calculate cost and performance for each technology on a consistent basis.



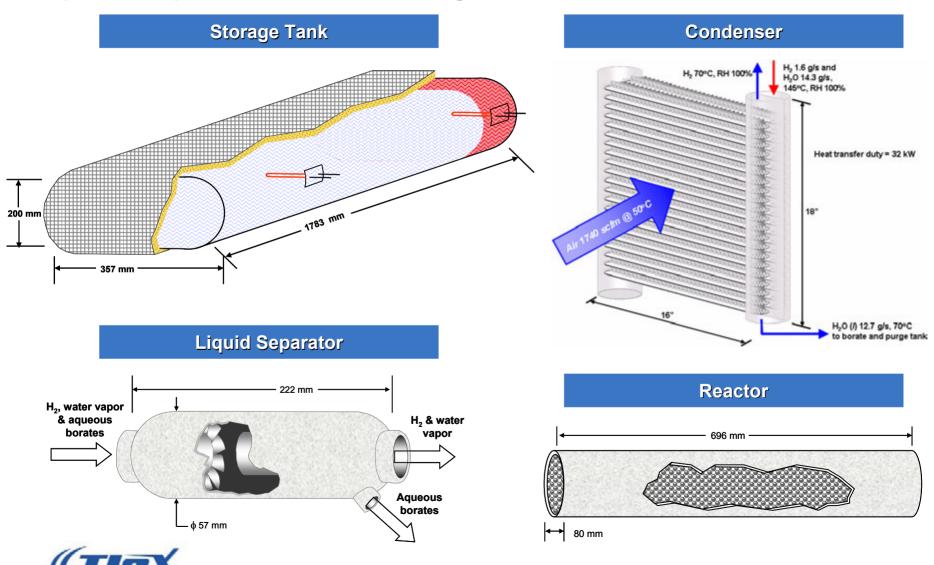
We have evaluated certain aspects of six H_2 storage technologies. Today's presentation will focus on the on-board NaBH₄ system.

Analysis To Date		cH ₂ *	Alanate	NaBH ₄	HC carrier	MgH ₂	Carbon
	Review developer estimates	\checkmark	\checkmark	\checkmark			\checkmark
On Board	Develop process flow diagrams and system energy balances	\checkmark	\checkmark	\checkmark			
On-Board	Independent performance assessment (wt, vol)	\checkmark	\checkmark	\checkmark			
	Independent cost assessment	\checkmark	\checkmark	\checkmark			
	Review developer estimates	\checkmark		WIP	WIP	WIP	
0% D 1	Develop process flow diagrams and system energy balances	\checkmark		WIP		WIP	
Off-Board	Independent performance assessment (energy, GHG)	\checkmark		WIP			
	Independent cost assessment	\checkmark		WIP			
	WTT analysis tool ¹	WIP					
Overall	Solicit input on TIAX analysis	\checkmark	\checkmark	WIP			
	Interim report		WIP				

* Detailed, independent assessment conducted for DOE under other contracts.

¹ Working with ANL and H2A participants on separate WTT analysis tools.

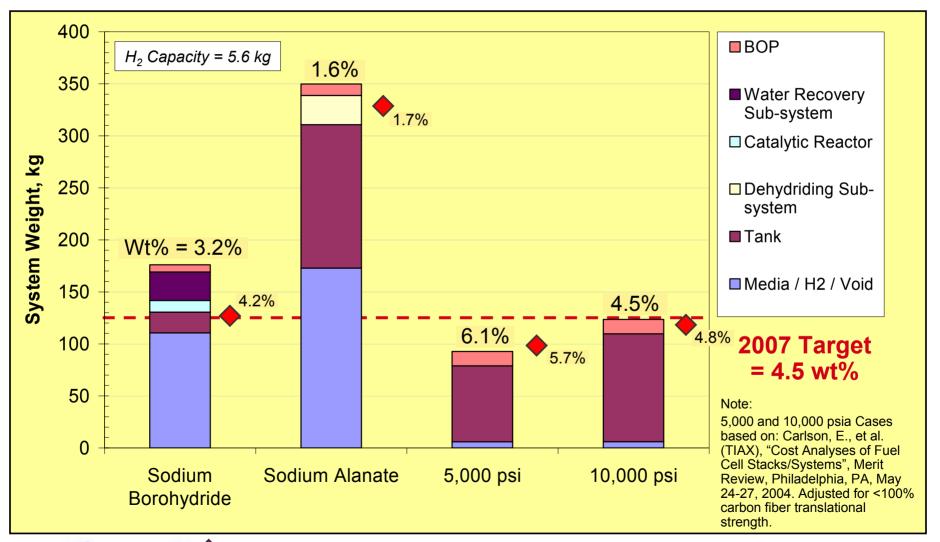
We made a number of system-level design assumptions based primarily on literature review and discussions with developers and stakeholders.

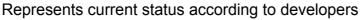

System Element	Design Parameter	Value	Basis
	H ₂ Storage Capacity	5.6 kg	ANL drive-cycle modeling, midsized vehicle
	NaBH ₄ H ₂ Capacity (theoretical)	21.3 wt%	Based on hydrolysis of sodium borohydride with water: $NaBH_4 + 4H_2O \rightarrow NaB(OH)_4 + 4H_2$ (weight of water not included)
	NaBH ₄ Concentration in Water	26 wt%	MCell: conversation w/ Wu and Mohring
Media	Solution Stabilizer	3 wt% NaOH	MCell: Zhang, et al (NHA '04)
	NaBH ₄ solution density	1.04 kg/L	MCell: correspondence w/ Wu and Mohring
	Metaborate solution density (saturated)	1.25 kg/L	MCell: correspondence w/ Wu and Mohring
	Freeze Point of Metaborate	~ -12 ºC	TIAX estimate of water freeze point suppression due to concentration of metaborate ions
	Wetted Material	Polypropylene / Stainless Steel	Rohm&Haas: web site
Storage Tank	Borate Separator Material	Polypropylene	Rohm&Haas: web site
	Maximum Tank Heat Input	20 W	TIAX tank heat loss model w/ ~.02 m insulation to maintain -12°C in -40°C ambient

* Additional system design assumptions are in the Backup Slides section.

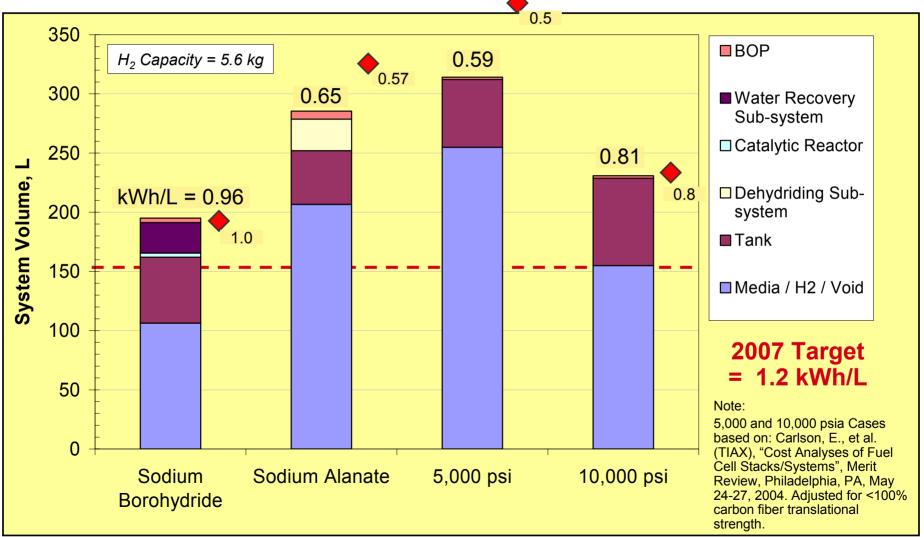
Progress Component Designs

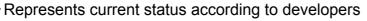
The system-level design assumptions were used to develop individual component specifications and designs.


Feedback from national labs, developers, and stakeholders was solicited at numerous meetings since the last Merit Review.

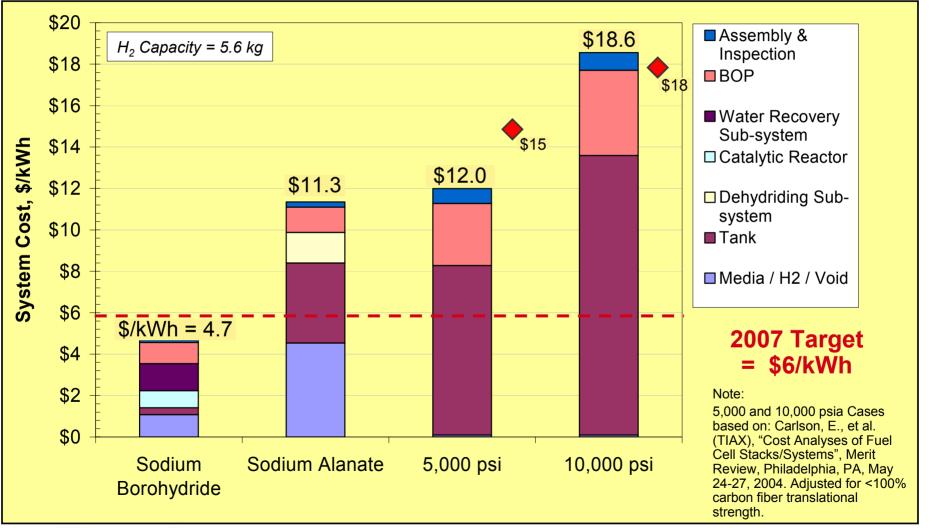

Audience/ Reviewer	Date	Location	TIAX Presentation Content
DOE Merit Review	May 05	Crystal City VA	On-board NaAlH ₄
Safe Hydrogen, DOE, NREL	Jun 05	Telecon	Prelim Off-board MgH ₂
H ₂ Delivery Tech Team Mtg.	Jul 05	Telecon	On-board NaAlH ₄ , Prelim On-board and Off-board NaBH ₄ (no cost)
Millennium Cell, DOE	Jul 05	Telecon	Prelim On-board NaBH ₄
Rohm and Haas	Jul 05	Telecon	Approach (discussion only)
DOE, LLNL, ANL	Jul 05	Telecon	On-board cH ₂ and NaAlH ₄
Safe Hydrogen	Aug 05	Cambridge MA	On-board NaBH ₄ , Prelim Off-board NaBH ₄ and MgH ₂
MH COE System Analysis Mtg.	Sep 05	Telecon	On-board NaAlH ₄ , Prelim BOP cost reductions
H ₂ Storage Tech Team Mtg.	Sep 05	Washington DC (video conf.)	Prelim On-board NaBH ₄ , Prelim BOP cost reductions
CH COE System Analysis Mtg.	Oct 05	Argonne IL	Prelim On-board NaBH ₄
Fuel Cell Seminar	Nov 05	Palm Springs CA	Prelim On-board NaBH ₄
Storage System Analysis Mtg.	Nov 05	Palm Springs CA	On-board NaAlH ₄ , Prelim On-board NaBH ₄
FreedomCAR & Fuel Partnership Analysis Workshop	Jan 06	Washington DC	On-board NaAlH ₄ , Prelim On-board NaBH ₄ , Prelim Off-board NaBH ₄ and MgH ₂
H ₂ Storage Tech Team Mtg.	Apr 06	Detroit MI	Revised On-board NaAlH ₄ and NaBH ₄

Results Weight Comparison


The current designs for the sodium alanate and sodium borohydride systems will likely be heavier than compressed hydrogen storage.



Results Volume Comparison


The sodium borohydride system could be smaller than compressed hydrogen storage, provided a volume exchange tank design is feasible.

Results Factory Cost Comparison

Although the factory cost of the NaBH₄ system will be lower than the compressed hydrogen and alanate systems, fuel costs may be higher.

Represents current status according to developers (assuming high volume manufacturing)

Single- and multi-variable sensitivity analyses are used to estimate the dependence and sensitivity of cost on/to the critical cost drivers.

Single-Variable Sensitivity Analysis: Example – Sodium Alanate Factory Cost

As we finalize the sodium alanate and sodium borohydride cases, our findings show they will not meet the 2007 weight and volume targets.

Storage Parameter	Units	2007 Target	Sodium Alanate	Sodium Borohydride
Specific energy (mass)	kWh/kg	1.5	0.53	1.06
	(kg H ₂ /kg)	(0.045)	(0.016)	(0.032)
Energy density	kWh/L	1.2	0.65	0.96
(volume) ¹	(kg H ₂ /L)	(0.036)	(0.019)	(0.029)
Storage system cost	\$/kWh	6	11.3	4.7
	(\$/kg H ₂)	(200)	(377)	(160)
Fuel cost	\$/gge	3	TBD	TBD

Note: Targets must be met simultaneously. Results are not accurate to the number of significant figures shown.

¹ Volume results do not include void spaces between components (i.e., no packing factor was applied).

- Note that these systems are based on "current technology" and do not necessarily meet other DOE targets (e.g. refueling rate)
- ANL is evaluating mass and volume projections for systems that meet all other DOE targets not shown here

We are in the process of finalizing the alanate and sodium borohydride on-board results and conducting the off-board assessment.

- Finalize results for the on-board alanate and sodium borohydride systems, including:
 - Peer review and incorporate feedback
 - Run single- and multi-variable sensitivity analysis
 - Publish interim report on sodium alanate Milestone
- Conduct off-board analyses for alanate and sodium borohydride systems and integrate into a Well-to-Wheels analysis
 - > WTT and WTW energy use and GHG emissions
 - Vehicle integration and efficiency impacts
 - Hydrogen "refueling cost" and storage system "ownership cost"
 - Publish interim report on sodium borohydride Milestone
- Continue to work with DOE, H2A, other analysis projects, developers, National Labs, and Tech Teams

Specific technologies are chosen for assessment by DOE in light of results and progress within the Grand Challenge program.

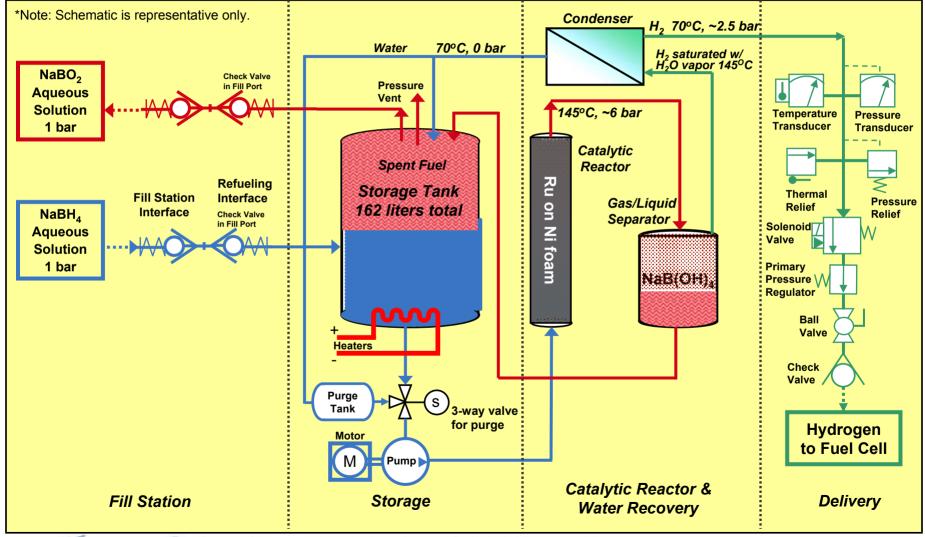
Category	Initial Cases	Tech Status ¹	Storage State	H ₂ Release	Refueling Type
Compressed and Liquid Hydrogen	5,000 & 10,000 psi	Pre- commercial	Gas	Pressure regulator	cH ₂ gas
Reversible On- board: Metal Hydrides and Alanates	Sodium Alanate (UTRC)	Proof of Concept Prototype	Solid	Endothermic desorption	cH ₂ gas and HTF loop
Regenerable Off-board: Chemical Hydrides	Sodium Borohydride (MCell)	Early Prototype	Aqueous solution	Exothermic hydrolysis	Aqueous solution in/out
High Surface Area Sorbents: Carbon	TBD	R&D	Solid (low T?)	Endothermic desorption	cH ₂ gas (low T?)

¹ For discussion purposes only. Developer claims may vary.

Next we will complete the assessment of a second chemical hydride storage technology and begin the assessment of a technology TBD.

Thank You

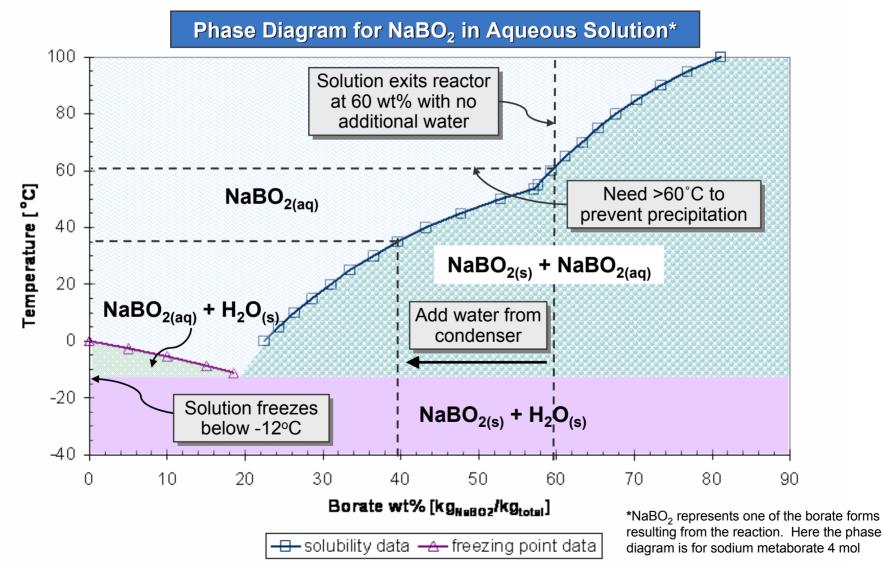
- "Need more frequent update and coordination with the Tech Team" and "Need to constantly work towards keeping all of the PIs of the other DOE projects 'in the loop' on their work"
 - Presented at 7 meetings with Tech Teams and 12 meetings with developers (4 and 9 since May 2005)
 - Presented to public at DOE Merit Review, Fuel Cell Seminar, and NHA
 - > Participated in numerous other meetings/conference calls with DOE, ANL and developers
- "The values used in analysis vary from the actual values achieved in storage projects" and "The UTRC results seem to show even significantly worse performance characteristics than proposed from this model"
 - Some variance is expected due to the fact that we are using a consistent set of design parameters (e.g. 5.6 kg H₂) and assumptions (e.g. designs for high-volume manufacturing) while developers are not (e.g. different sizes, one-off "prototype systems")
 - > We compare our results to developers' measured and projected values as they become available
 - > To date, only minor changes to our assumptions have been made based on these comparisons
- "The urgency for these analyses is acute" and "Faster turn around" versus "It is too early in the [Grand Challenge] program to expect any directionally correct results"
 - > We are in constant dialogue with DOE, Tech Teams and developers so we can prioritize activities
 - > Project is operating according to the assigned annual budget
- "The assumptions used in developing the analysis were conservative" versus "Lots of the numbers used are very optimistic based on the actual progress of the UTRC project"
 - The project team is attempting to strike a balance between evaluating today's sub-optimal "prototype system" and a projected "future system" that may have overly optimistic performance/cost assumptions
 - > We independently develop or verify model inputs and review them with developers and stakeholders
 - > The remaining uncertainty is addressed in the sensitivity analyses


Fuel Cell Seminar

- > Lasher, et al; Comparison of On-Board Hydrogen Storage Options
- November 2005, Palm Springs CA
- FreedomCAR & Fuel Tech Team Meetings
 - July 2005, Columbia MD (Delivery)
 - September 2005, Washington DC/Detroit MI (Storage)
 - January 2006, Washington DC (Analysis Workshop)
 - April 2006, Detroit MI (Storage)
- COE System Analysis Meetings
 - September 2005, Washington DC (Metal Hydride)
 - October 2005, Argonne IL (Chemical)
 - November 2005, Palm Springs CA (All)

Backup Slides NaBH₄ System Conceptual Design

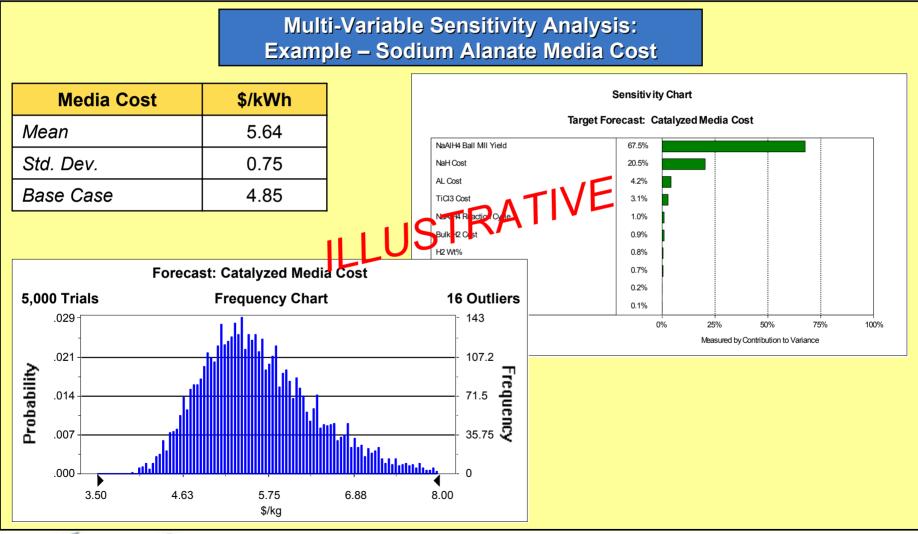
The storage tank is the largest and heaviest component, while water management is the most critical process in a NaBH₄ storage system.



*Sensors, safeties and controls based on the requirements defined in the draft European regulation for "Hydrogen Vehicles: On-board Storage Systems" and US Patents 6,041,762; 6,709,497. **Additional safety and start-up components may be required.

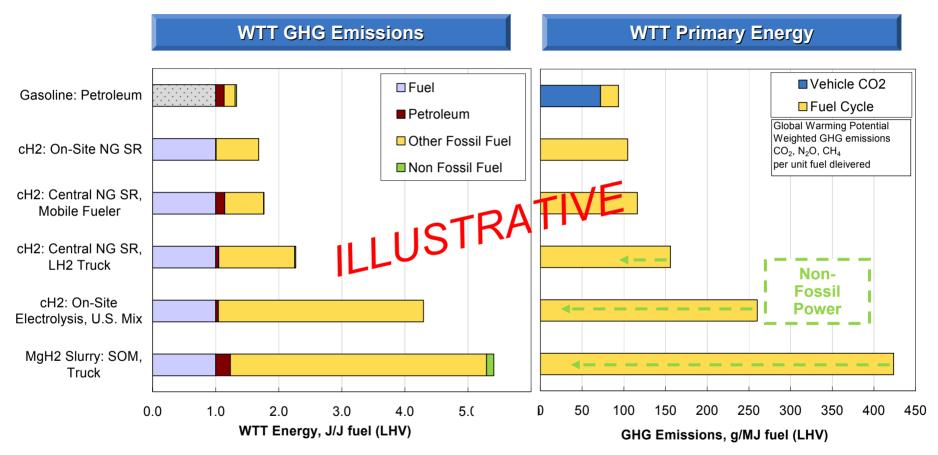
Backup Slides NaBH₄ Concentration in Water

Water and thermal management are required to avoid solution precipitation and freezing adding to system complexity.



We made a number of system-level design assumptions based primarily on literature review and discussions with developers and stakeholders.

System Element	Design Parameter	Value	Basis	
	Heat of Decomposition	-37.2 kJ/kg H ₂	Based on reaction thermodynamics (300 kJ/mol NaBH ₄)	
	Catalyst	Ru on Ni substrate		
	Catalyst Concentration	1 wt% of substrate	w/ Wu and Mohring	
Reactor	Conversion Efficiency	92%	MCell: Zhang, et al (NHA '04). Reactor sized to	
Reactor	Reactor Throughput (SLPM H ₂ / liter reactor)	120	deliver up to 40% peak demand flow (1.6 g H ₂ /s at 92% conversion. Reactor will also deliver 100 peak demand flow, but at lower conversion efficiency.	
	Peak Operating Temp	145 °C	MCell Natrium vehicle	
	Max. Pressure	6 bar (88 psig)	MCell Natrium vehicle	
Gas-Liquid	Settling Velocity	~0.1 m/s	Chem-Pet Process Technology Ltd (Monnery '00)	
Separator	Aspect Ratio, L/D	3.3 - 5	and various manufacturers' product literature	
	Max. Heat Duty	32 kW	Calculated duty to condense H_2O from H_2 stream at full power	
Condenser	Exit Temp / Humidity	70ºC / 100% RH	Assumed fuel cell operating conditions	
	Max. Ambient Temp	50 °C	FreedomCAR Targets (includes solar load)	
	Fan Power	750 W	TIAX heat exchanger design calculation	



Multi-variable sensitivity analysis is used to estimate the dependence and sensitivity of cost on/to the critical cost drivers.

Well-to-Tank energy use and GHG emissions will be calculated using the appropriate fuel cycle efficiencies and GHG factors.

