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We are in the process of evaluating the performance andWe are in the process of evaluating the performance and
cost of various hydrogen storage options for the DOE.cost of various hydrogen storage options for the DOE.

Project Overview   Background
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On-board cost and performance estimates are based onOn-board cost and performance estimates are based on
detailed technology assessment and cost modeling.detailed technology assessment and cost modeling.
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To date, we have evaluated compressed gas tanks, sodiumTo date, we have evaluated compressed gas tanks, sodium
alanate, and sodium borohydride storage technologies.alanate, and sodium borohydride storage technologies.

Project Overview   Scope
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System Designs   Compressed Hydrogen Tank

Two type III compressed hydrogen tanks were designed toTwo type III compressed hydrogen tanks were designed to
accommodate 5,000 and 10,000 psi storage pressures.accommodate 5,000 and 10,000 psi storage pressures.

Liner (polymer, metal, laminate)
   HDPE  6.3 mm thick
   Al         2.3 mm thick

Damage Resistant Outer Layer (typically
glass fiber wound)

Wound Carbon Fiber Structural Layer with
Resin Impregnation
(Vf CF:Epoxy 0.6:0.4; Wf 68/32)

Metal Boss (aluminum) for Tank Access
(some constructions may also use a plug on
the other end)

Impact Resistant Foam End Dome
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System Designs   Sodium Alanate Tank

A sodium alanate storage tank was designed toA sodium alanate storage tank was designed to
accommodate both high pressure and rapid heat exchange.accommodate both high pressure and rapid heat exchange.
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A sodium borohydride storage system was designed toA sodium borohydride storage system was designed to
accommodate solution storage and water management.accommodate solution storage and water management.
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Manufacturing processes and equipment are determinedManufacturing processes and equipment are determined
based on the individual component designs.based on the individual component designs.

In this case, we assume a tank manufacturing process thatIn this case, we assume a tank manufacturing process that
loads the alanate in automated steps.loads the alanate in automated steps.
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The complete storage systems require significant BOP forThe complete storage systems require significant BOP for
overall flow control and thermal management.overall flow control and thermal management.
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We have evaluated system designs based on the currentWe have evaluated system designs based on the current
technology, which does not always meet DOE targets.technology, which does not always meet DOE targets.

• Off-board requirements will be very different
• Major impact on life-cycle cost and fuel chain efficiency
• May impact on-board efficiency and usable hydrogen stored

Refueling

• Additional components or advanced designs may be needed
• May impact on-board efficiency and usable hydrogen stored

Transient and
Start-up

• Limited amount of real-world data
• Reformulated materials or advanced designs may be needed
• Major impact on life-cycle cost
• May impact on-board efficiency and usable hydrogen stored if
material performance degrades over time

Material Life

• Not all systems will have the same inherent safety
• Additional components will be needed

Safety

Comments/Impact of Meeting TargetComments/Impact of Meeting TargetIssuesIssues

System Designs   Caveats

Not all systems will perform exactly the sameNot all systems will perform exactly the same
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Compressed hydrogen storage at 5,000 and 10,000 psiCompressed hydrogen storage at 5,000 and 10,000 psi
resulted in the lowest overall system weight.resulted in the lowest overall system weight.

Results   Weight Comparison
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Sodium borohydride system with volume exchange designSodium borohydride system with volume exchange design
would be somewhat smaller than a 10,000 psi system.would be somewhat smaller than a 10,000 psi system.

Results   Volume Comparison

Note: Volume results do not include void spaces between components (i.e., no packing factor was applied).
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Factory cost of the sodium borohydride system is projectedFactory cost of the sodium borohydride system is projected
to be lower than the other systems evaluated thus far.to be lower than the other systems evaluated thus far.

Results   Cost Comparison

Note: Factory cost results do not include refueling costs over the life of the storage system.
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Both basic research and system-level engineering need toBoth basic research and system-level engineering need to
continue if a viable storage system is to be developed.continue if a viable storage system is to be developed.

Conclusions   Initial Cases
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TechnologyTechnology

•Conformable tank
•Low factory cost
•Low-pressure storage
• “Pumpable”

•Lower-pressure storage
•Relatively low fuel cost
•Relatively high fuel chain
efficiency

•High gravimetric density
•Most mature
•Relatively low fuel cost
•Relatively high fuel chain
efficiency

Potential AdvantagesPotential Advantages

•One-tank design and water
management challenges

•Fuel cost and fuel chain
efficiency TBD

•Low gravimetric density
•High factory cost
•High energy, P, T requirements
•Slow startup

•Will not meet volumetric density
target

•High factory cost
•High-pressure storage

Potential DisadvantagesPotential Disadvantages
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 Preliminary results will continue to be refined based on
developer/stakeholder feedback and progress

 Off-board (WTT) analysis will begin on the initial cases

 Task 1 report will summarize the results for the initial cases

 Work with DOE, ANL and COEs to select and evaluate new
cases

We will continue to support DOE and the Grand ChallengeWe will continue to support DOE and the Grand Challenge
participants as they refine designs, processes, andparticipants as they refine designs, processes, and
materials.materials.

Conclusions   Next Steps
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