Comparison of On-board Hydrogen Storage Options

Fuel Cell Seminar November 14-18, 2005

Stephen Lasher Eric Carlson John Bowman Yong Yang Mark Marion TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390

Tel. 617- 498-5000 Fax 617-498-7200 www.TIAXLLC.com Reference: D0268

© 2005 TIAX LLC

(TIAX

Project Overview Background

We are in the process of evaluating the performance and cost of various hydrogen storage options for the DOE.

Project Overview Approach

On-board cost and performance estimates are based on detailed technology assessment and cost modeling.

Performance and Tech Assessment	Cost Modeling	Overall Model Refinement
 Literature Review System Design and Configurations Process Modeling Outline Assumptions Developer Feedback 	 Document BOM Determine Material Costs Identify Processes and Mnf. Equipment Sensitivity Analyses 	 Developer and Stakeholder Feedback Revise Assumptions and Model Inputs
	Interconnect Image: Case Electrolyte Sector Cathods Image: Case Base Image: Case Base	Side of the second seco

Project Overview Scope

To date, we have evaluated compressed gas tanks, sodium alanate, and sodium borohydride storage technologies.

Category	Initial Cases	Tech Status	Storage State	H ₂ Release	Refueling
Compressed and Liquid Hydrogen	5,000 & 10,000 psi	Mature (low volume)	Gas	Pressure regulator	H ₂ gas
Reversible On- board: <i>Metal</i> <i>Hydrides, Alanates</i>	Sodium Alanate	Proof of Concept	Solid	Endothermic desorption	H ₂ gas and HTF loop
Regenerable Off- board: <i>Chemical</i> <i>Hydrides</i>	Sodium Borohydride	Early Proto- type	Aqueous solution	Exothermic hydrolysis	Aqueous solution in/out
High Surface Area Sorbents: <i>Carbon</i>	TBD	R&D	Solid (low T?)	Endothermic desorption	H ₂ gas (low T?)

¹ HTF = Heat Transfer Fluid

System Designs Compressed Hydrogen Tank

Two type III compressed hydrogen tanks were designed to accommodate 5,000 and 10,000 psi storage pressures.

Metal Boss (aluminum) for Tank Access (some constructions may also use a plug on the other end)

Liner (polymer, metal, laminate) HDPE 6.3 mm thick Al 2.3 mm thick

Wound Carbon Fiber Structural Layer with Resin Impregnation (V_f CF:Epoxy 0.6:0.4; W_f 68/32)

Impact Resistant Foam End Dome

Damage Resistant Outer Layer (typically glass fiber wound)

System Designs Sodium Alanate Tank

A sodium alanate storage tank was designed to accommodate both high pressure and rapid heat exchange.

System Designs Sodium Borohydride Components

A sodium borohydride storage system was designed to accommodate solution storage and water management.

System Designs Sodium Alanate Tank Manufacturing

Manufacturing processes and equipment are determined based on the individual component designs.

In this case, we assume a tank manufacturing process that loads the alanate in automated steps.

System Designs Sodium Alanate System

The complete storage systems require significant BOP for overall flow control and thermal management.

System Designs Caveats

We have evaluated system designs based on the current technology, which does not always meet DOE targets.

Issues	Comments/Impact of Meeting Target
Transient and Start-up	 Additional components or advanced designs may be needed May impact on-board efficiency and usable hydrogen stored
Material Life	 Limited amount of real-world data Reformulated materials or advanced designs may be needed Major impact on life-cycle cost May impact on-board efficiency and usable hydrogen stored if material performance degrades over time
Safety	 Not all systems will have the same inherent safety Additional components will be needed
Refueling	 Off-board requirements will be very different Major impact on life-cycle cost and fuel chain efficiency May impact on-board efficiency and usable hydrogen stored

Not all systems will perform exactly the same

Results Weight Comparison

Compressed hydrogen storage at 5,000 and 10,000 psi resulted in the lowest overall system weight.

Results Volume Comparison

Sodium borohydride system with volume exchange design would be somewhat smaller than a 10,000 psi system.

Note: Volume results do not include void spaces between components (i.e., no packing factor was applied).

Results Cost Comparison

Factory cost of the sodium borohydride system is projected to be lower than the other systems evaluated thus far.

Note: Factory cost results do not include refueling costs over the life of the storage system.

Conclusions Initial Cases

Both basic research and system-level engineering need to continue if a viable storage system is to be developed.

Technology	Potential Advantages	Potential Disadvantages
5,000 & 10,000 psi	 High gravimetric density Most mature Relatively low fuel cost Relatively high fuel chain efficiency 	 Will not meet volumetric density target High factory cost High-pressure storage
Sodium Alanate	 Lower-pressure storage Relatively low fuel cost Relatively high fuel chain efficiency 	 Low gravimetric density High factory cost High energy, P, T requirements Slow startup
Sodium Borohydride	 Conformable tank Low factory cost Low-pressure storage "Pumpable" 	 One-tank design and water management challenges Fuel cost and fuel chain efficiency TBD

Conclusions Next Steps

We will continue to support DOE and the Grand Challenge participants as they refine designs, processes, and materials.

- Preliminary results will continue to be refined based on developer/stakeholder feedback and progress
- Off-board (WTT) analysis will begin on the initial cases
- Task 1 report will summarize the results for the initial cases
- Work with DOE, ANL and COEs to select and evaluate new cases

Acknowledgment

Thanks to DOE and the Office of Hydrogen, Fuel Cells & Infrastructure Technologies Steve Chalk, Sunita Satyapal, Carole Read, Grace Ordaz Input from the Centers of Excellence, developers, National Labs, and stakeholders UTRC and MCell Teams \succ ANL, SNL, SRNL, LLNL Hydrogen Storage and Delivery Tech Teams Rest of the project team Gas Technology Institute, Prof. Robert Crabtree (Yale) University), Prof. Daniel Resasco (U. of Oklahoma)

