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Start date: June 2004
End date: Sept 2009
14% Complete

Barriers addressed
A. Cost
C. Efficiency
G. Life Cycle and Efficiency 
Analyses

Total project funding
DOE share = $1.5M
No cost share

FY04 = $112k

FY05 = $200k

Budget
Team: GTI, Prof. Robert 
Crabtree (Yale), Prof. Daniel 
Resasco (U. of Oklahoma)

Feedback: National Labs, 
Developers, Stakeholders

Partners

Timeline Barriers

Overview
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Overall: Help guide DOE and developers toward promising 
R&D and commercialization pathways by evaluating the 
various on-board hydrogen storage technologies on a 
consistent basis
Past Year: Develop system-level designs and estimate the 
cost, weight, and volume for a base case metal 
hydride/alanate hydrogen storage system

Selected sodium alanate as the base case
Developed results and compared to DOE targets and 
results for compressed hydrogen storage

Objectives
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Our on-board cost and performance estimates are based on detailed 
technology assessment and bottom-up cost modeling.

Approach Overview

Performance/Performance/
Tech AssessmentTech Assessment Cost ModelingCost Modeling Overall ModelOverall Model

RefinementRefinement

•Literature Search
•Outline Assumptions
•System Design and 
Configurations

•Process Models

•Developer and 
Industry Feedback

•Revise Assumptions 
and Model Inputs

•Document BOM
•Determine Material 
Costs

•Identify Processes and 
Mnf. Equipment

•Sensitivity Analyses
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We made design assumptions for the NaAlH4 system based on literature 
review, developer feedback and TIAX experience.

Design ParameterDesign Parameter ValueValue BasisBasis

H2 Storage Capacity 5.6 kg

4 wt%

TiCl3
4 mol%

0.6

41 kJ/mol H2

Min. Temperature 100 oC SNL (Wang, Merit Review, May 04)

186 oC

< 1 W/m K

Media (hydrided) Specific Heat 1,418 J/kg K SNL (Dedrick, JAC 04 - draft)

Al Foam Conductivity ~52 W/m K Metal Foams ~ keff=0.28kAl@473K

Pressure Safety Factor 2.25 Industry standard

~912 J/kg K

100 bar (1470 psi)

2 mm (14 ga)

NaAlH4 H2 Capacity

ANL drive-cycle modeling

UTRC (Anton, Merit Review, May 04)

Bogdanovic & Schwickardi, JAC 97

Bogdanovic & Sandrock, MRS 02

UTRC (Anton, Merit Review, May 04)

Reaction thermodynamics

SNL (Gross, JAC 02)

SNL (Wang, Merit Review, May 04)

Aluminum alloy 2024 @473K

UTRC (Anton, Merit Review, May 04)

Catalyst

Catalyst Concentration

Powder Packing Density

Heat of Decomposition

Estimate required for integrity

Media Conductivity

Al Specific Heat

Max. Pressure

Mechanical

Max. Temperature

Media

Liner Thickness

Thermal

Progress Design Assumptions
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We assume NaAlH4 decomposes in a reversible two step reaction to 
achieve 4 wt% H2 under practical conditions.

Theoretical = 5.6 wt%

“Demonstrated” ~ 4 wt% 
(absorption/desorption)

P ~ 100 / 2 bar
T ~ 100 / 120 ˚C

TiCl3 + NaAlH4 = 3.2 wt%
4 mol% Ti-precursor added 
to catalyze reaction
Ti + NaAlH4 = 3.8 wt%

High pressure output (e.g. 8 
atm) would limit to 1st Step Reference: Gross, K. (SNL) presentation at DOE Hydrogen and Fuel Cells Annual 

Merit Review, May 2003

8 bar

1st Step: NaAlH4 1/3 Na3AlH6 + 2/3 Al +  H2(g) H2 wt%=3.7
2nd Step: Na3AlH6 3 NaH + Al + 3/2 H2(g) H2 wt%=1.9

Progress Material H2 Capacity Assumption
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We developed a conceptual design for a tank to accommodate rapid
heat exchange and high adsorption pressure conditions (100 bar).

TIAX Base Case Design (5.6 kg H2): Carbon Fiber Composite Tank

3” diameter size

1.5m

0.5m

Liner

CF
GF

Insulation

HTF H2

Sintered SS Filters

4% Al foam

HTF Manifold

Metal Foam

LegendLegendLegend

Al = Aluminum
GF = Glass Fiber
CF = Carbon Fiber

HTF = Heat Transfer Fluid
HX = Heat Exchanger
SS = Stainless Steel

Progress Tank Conceptual Design
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We assumed a tank manufacturing process that loads the alanate in 
several automated steps under an inert atmosphere. 

Alternative processes, such as loading the alanate in molten form after 
CF curing, may be necessary for high volume manufacture.

Progress Tank Manufacturing
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HTF
~125˚C

H2
100 bar

HTF
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The complete system requires significant balance of plant (BOP) 
components for overall thermal management and flow control.

Progress System Conceptual Design
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Thermal integration with the stack was not considered at this time.

We sized a compact, fin and tube design for the heat transfer fluid (HTF) 
heat exchanger.

Progress Dehydriding Subsystem
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We have identified a number of system-level issues that must be 
addressed by the on-going R&D.

Progress Other Design Issues

•24% H2 required for dehydriding heat
• Is waste heat from power unit sufficient and coincident?

Thermal 
Integration

•Two-fluid dispensing (H2 gas and HTF) is required
•Long refueling times (minutes or hours?)

Refueling

•33 MJ (5% of 5.6 kg H2) required to heat media from 0˚C
•Is secondary H2 storage (or battery/electric heater) needed 
for start-up?

Start-up

•Limited cycling data
•Powder and catalyst can segregate and lose effectiveness

Material 
Life

•Powder is highly explosive, reacts with water or air
• Is an inert atmosphere needed for vehicle refueling and 
tank manufacturing?

Safety

CommentsCommentsIssuesIssues
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Sodium alanate will not meet the DOE weight target.  Materials with 
greater than 7 wt% may be required to meet even the ’05 target.

Results Weight Comparison
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The sodium alanate system will likely be about 40% larger than the 
10,000 psi compressed hydrogen storage system.

Results Volume Comparison
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Results Factory Cost Comparison

Our assessment indicates the manufactured cost of a sodium alanate 
system will be on-par with 10,000 psi compressed gas.
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1035.2Catalyzed Media Cost ($/kg)
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Sensitivity Analysis Sensitivity Analysis -- Factory Cost ($/kWh)Factory Cost ($/kWh)

Base 
Case = 

$13/kWh

Assuming a very optimistic media cost of $3/kg reduces the overall cost 
of the system by less than 15%.

Results Example of Sensitivity Analysis
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Media hydrogen capacity
Some alanates could have 
higher reversible wt%
But more challenging 
thermal requirements
May need >13 wt% to 
achieve 9 wt% target

Other material issues
Kinetics are slow—refueling 
and transient response
Life is unknown—cycling 
and poisoning

Tank and BOP
~60% of system cost and 
~50% of system weight
Containment and 
contamination

System integration
Thermal integration with 
power unit is critical
1.24X larger if H2 needed 
for dehydriding reaction is 
included

Conclusions
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Done
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Done
2003*

StatusStatus

We are in the process of evaluating the base case for chemical hydrides 
and will begin the assessment of high surface area sorbents in 2006.
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Storage Storage 
TechnologyTechnology

1 HTF = Heat Transfer Fluid
* Compressed hydrogen was evaluated under a separate DOE contract.

Future Work    Categories of Storage



17SL/042905/D0268 ST19_Lasher_H2 Storage_final1.ppt

In future work, we will evaluate overall WTW performance and lifecycle 
cost for all the hydrogen storage options.

Future Work    Well-to-Wheels Analysis
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Publications and Presentations

Presentations under the title: “Analyses of Hydrogen Storage Materials 
and On-Board Systems”; Lasher et al

Hydrogen Storage Tech Team Meeting; April 21, 2005; Detroit MI
Storage System Analysis Meeting; March 29, 2005; Washington DC
Hydrogen Storage Tech Team Meeting; August 19, 2004; Detroit MI

Presentations under the title: “Comparison of Hydrogen Storage 
Options”; Lasher et al

NHA Annual Hydrogen Conference; March 30, 2005; Washington DC
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Hydrogen Safety

The most significant hydrogen hazard associated with this project is:
None
This is an analysis project with no on-going or proposed hands-on 
laboratory or hardware development work

Our approach to deal with this hazard is:
None required
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